Kokot, H.* ; Kokot, B.* ; Sebastijanović, A.* ; Voss, C. ; Podlipec, R.* ; Zawilska, P.* ; Berthing, T.* ; Ballester-Lopez, C. ; Danielsen, P.H.* ; Contini, C.* ; Ivanov, M.* ; Krišelj, A.* ; Čotar, P.* ; Zhou, Q. ; Ponti, J.* ; Zhernovkov, V.* ; Schneemilch, M.* ; Doumandji, Z.* ; Pušnik, M.* ; Umek, P.* ; Pajk, S.* ; Joubert, O.* ; Schmid, O. ; Urbančič, I.* ; Irmler, M. ; Beckers, J. ; Lobaskin, V.* ; Halappanavar, S.* ; Quirke, N.* ; Lyubartsev, A.P.* ; Vogel, U.* ; Koklič, T.* ; Stöger, T. ; Štrancar, J.*
Prediction of chronic inflammation for inhaled particles: The impact of material cycling and quarantining in the lung epithelium.
Adv. Mater. 32:e2003913 (2020)
On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Advanced Microscopies ; Adverse Outcome Pathways ; Disease Prediction ; Material Safety And Health Hazards ; Mode Of Action; Molecular-dynamics; Chemical Safety; Nanomaterials; Responses; Nanotoxicology; Nanoparticles; Exposure; Matter; Hazard; Actin
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
0935-9648
e-ISSN
1521-4095
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 32,
Issue: ,
Pages: ,
Article Number: e2003913
Supplement: ,
Series
Publisher
Wiley
Publishing Place
Weinheim
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
30201 - Metabolic Health
Research field(s)
Lung Research
Genetics and Epidemiology
PSP Element(s)
G-505000-001
G-505000-007
G-505000-008
G-500600-004
Grants
Crossing borders and scales - an interdisciplinary approach (CROSSING project)
Science Foundation Ireland
China Scholarship Council (CSC fellowship)
Genomics Research and Development Initiative and Chemicals Management Plan of Health Canada
Helmholtz Alliance "Aging and Metabolic Programming, AMPro"
Slovenian Research Agency Young Researcher Program
Slovenian Research Agency
EU Horizon 2020 Grant
Copyright
Erfassungsdatum
2020-11-05