Rüger, C.P.* ; Le Maître, J.* ; Riches, E.* ; Palmer, M.* ; Orasche, J. ; Sippula, O.* ; Jokiniemi, J.* ; Afonso, C.* ; Giusti, P.* ; Zimmermann, R.
Cyclic ion mobility spectrometry coupled to high-resolution time-of-flight mass spectrometry equipped with atmospheric solid analysis probe for the molecular characterization of combustion particulate matter.
J. Am. Soc. Mass Spectrom. 32, 206-217 (2021)
Anthropogenic air pollution has a severe impact on climate and human health. The immense molecular complexity and diversity of particulate matter (PM) is a result of primary organic aerosol (POA) as well as secondary organic aerosols (SOAs). In this study, a direct inlet probe (DIP), i.e., atmospheric solids analysis probe (ASAP), with ion mobility high-resolution mass spectrometric detection is applied. Primary particulate matter emissions from three sources were investigated. Furthermore, photochemically aged emissions were analyzed. DIP introduction allowed for a direct analysis with almost no sample preparation and resulted in a complex molecular pattern. This pattern shifted through oxidation processes toward heavier species. For diesel emissions, the fuel's chemical characteristic is partially transferred to the particulate matter by incomplete combustion and characteristic alkylated series were found. Polycyclic aromatic hydrocarbons (PAHs) were identified as major contributors. Ion mobility analysis results in drift time profiles used for structural analysis. The apex position was used to prove structural changes, whereas the full-width-at-half-maximum was used to address the isomeric diversity. With this concept, the dominance of one or a few isomers for certain PAHs could be shown. In contrast, a broad isomeric diversity was found for oxygenated species. For the in-depth specification of fresh and aged spruce emissions, the ion mobility resolving power was almost doubled by allowing for three passes in the circular traveling wave design. The results prove that ASAP coupled with ion mobility spectrometry-mass spectrometry (IMS-MS) serves as a promising analytical approach for tackling the vast molecular complexity of PM.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Combustion Emission ; Complex Mixtures ; Cyclic Ion Mobility Spectrometry ; Direct Inlet Probe ; High-resolution Mass Spectrometry ; Particulate Matter (pm) ; Photochemical Aerosol Aging; Secondary Organic Aerosol; Oxidation Flow Reactors; 2-dimensional Gas-chromatography; Equivalent Boiling-point; Heavy Petroleums; Aromatic-hydrocarbons; Lubricating Oil; Air-pollution; Emissions; Chemistry
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
2020
HGF-reported in Year
2020
ISSN (print) / ISBN
e-ISSN
1044-0305
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 32,
Issue: 1,
Pages: 206-217
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
1155 16th St, Nw, Washington, Dc 20036 Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504500-001
Grants
Copyright
Erfassungsdatum
2020-12-17