Ostheim, P.* ; Coker, O.* ; Schüle, S.* ; Hermann, C.* ; Combs, S.E. ; Trott, K.R.* ; Atkinson, M.J. ; Port, M.* ; Abend, M.*
Identifying a diagnostic window for the use of gene expression profiling to predict acute radiation syndrome.
Radiat. Res. 195, 38-46 (2020)
In the event of a mass casualty radiological or nuclear scenario, it is important to distinguish between the unexposed (worried well), low-dose exposed individuals and those developing the hematological acute radiation syndrome (HARS) within the first three days postirradiation. In previous baboon studies, we identified altered gene expression changes after irradiation, which were predictive for the later developing HARS severity. Similar changes in the expression of four of these genes were observed using an in vitro human whole blood model. However, these studies have provided only limited information on the time frame of the changes after exposure in relationship to the development of HARS. In this study we analyzed the time-dependent changes in mRNA expression after in vitro irradiation of whole blood. Changes in the expression of informative mRNAs (FDXR, DBB2, POU2AF1 and WNT3) were determined in the blood of eight healthy donors (6 males, 2 females) after irradiation at 0 (control), 0.5, 2 and 4 Gy using qRT-PCR. FDXR expression was significantly upregulated (P < 0.001) 4 h after ≥0.5 Gy irradiation, with an 18-40-fold peak attained 4-12 h postirradiation which remained elevated (4-9-fold) at 72 h. DDB2 expression was upregulated after 4 h (fold change, 5-8, P < 0.001 at ≥ 0.5 Gy) and remained upregulated (3-4-fold) until 72 h (P < 0.001). The earliest time points showing a significant downregulation of POU2AF1 and WNT3 were 4 h (fold change = 0.4, P = 0.001, at 4 Gy) and 8 h (fold change = 0.3-0.5, P < 0.001, 2-4 Gy), respectively. These results indicate that the diagnostic window for detecting HARS-predictive changes in gene expression may be opened as early as 2 h for most (75%) and at 4 h postirradiation for all individuals examined. Depending on the RNA species studied this may continue for at least three days postirradiation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Rna Expression; Ex-vivo; Radiotherapy; Biomarkers
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
0033-7587
e-ISSN
1938-5404
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 195,
Issue: 1,
Pages: 38-46
Article Number: ,
Supplement: ,
Series
Publisher
Radiation Research Society
Publishing Place
810 E Tenth Street, Lawrence, Ks 66044 Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
30202 - Environmental Health
Research field(s)
Radiation Sciences
PSP Element(s)
G-501300-001
G-500200-001
Grants
Copyright
Erfassungsdatum
2020-12-18