PuSH - Publication Server of Helmholtz Zentrum München

Reiber, L.* ; Knillmann, S.* ; Kaske, O.* ; Atencio, L.C.* ; Bittner, L.* ; Albrecht, J.E.* ; Götz, A.* ; Fahl, A.K.* ; Beckers, L.M.* ; Krauss, M.* ; Henkelmann, B. ; Schramm, K.-W. ; Inostroza, P.A.* ; Schinkel, L.* ; Brauns, M.* ; Weitere, M.* ; Brack, W.* ; Liess, M.*

Long-term effects of a catastrophic insecticide spill on stream invertebrates.

Sci. Total Environ. 768:144456 (2021)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Accidental spills or illegal discharges of pesticides in aquatic ecosystems can lead to exposure levels that strongly exceed authorized pesticide concentrations, causing major impacts on aquatic ecosystems. Such short-term events often remain undetected in regular monitoring programs with infrequent sampling. In early spring 2015, we identified a catastrophic pesticide spill with the insecticide cypermethrin in the Holtemme River, Germany. Based on existing pre-event macroinvertebrate community data, we monitored the effects and recovery of the macroinvertebrate community for more than two years after the spill. Strong short-term effects were apparent for all taxa with the exception of Chironomidae and Tubificidae. Effects could also be observed on the community level as total abundance, taxa number and biomass strongly decreased. Total abundance and taxa number showed a fast recovery. Regarding long-term effects, the total biomass remained substantially below the pre-contamination level (76%) until the end of the study. Also the abundances of three taxa (Gammarus, Leuctra, Limnius Ad.) did not return to levels prior to the spill even after 26 months. This lack of the taxon-specific recovery was likely due to their long generation time and a low migration ability due to a restricted connectivity between the contaminated site and uncontaminated stream sections. These factors proved to be stronger predictors for the recovery than the pesticide tolerance. We revealed that the biological indicators SPEARpesticides and share of Ephemeroptera, Plecoptera and Trichoptera (EPT) are not suitable for the identification of such extreme events, when nearly all taxa are eradicated. Both indicators are functioning only when repeated stressors initiate long-term competitive replacement of sensitive by insensitive taxa. We conclude that pesticide spills can have significant long-term effects on stream macroinvertebrate communities. Regular ecological monitoring is imperative to identify such ecosystem impairments, combined with analytical chemistry methods to identify the potential sources of spills.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
7.963
1.977
2
2
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Catastrophic Release ; Cypermethrin ; Ecological Effects ; Macroinvertebrates ; Monitoring ; Recovery
Language english
Publication Year 2021
HGF-reported in Year 2021
ISSN (print) / ISBN 0048-9697
e-ISSN 1879-1026
Quellenangaben Volume: 768, Issue: , Pages: , Article Number: 144456 Supplement: ,
Publisher Elsevier
Publishing Place Radarweg 29, 1043 Nx Amsterdam, Netherlands
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
Research field(s) Environmental Sciences
PSP Element(s) G-509100-001
Grants Helmholtz Association
Scopus ID 85099386979
PubMed ID 33453533
Erfassungsdatum 2021-03-26