Weitere, M.* ; Altenburger, R.* ; Anlanger, C.* ; Baborowski, M.* ; Bärlund, I.* ; Beckers, L.M.* ; Borchardt, D.* ; Brack, W.* ; Brase, L.* ; Busch, W.* ; Chatzinotas, A.* ; Deutschmann, B.* ; Eligehausen, J.* ; Frank, K.* ; Graeber, D.* ; Griebler, C. ; Hagemann, J.* ; Herzsprung, P.* ; Hollert, H.* ; Inostroza, P.A.* ; Jäger, C.G.* ; Kallies, R.* ; Kamjunke, N.* ; Karrasch, B.* ; Kaschuba, S. ; Kaus, A.* ; Klauer, B.* ; Knöller, K.* ; Koschorreck, M.* ; Krauss, M.* ; Kunz, J.V.* ; Kurz, M.J.* ; Liess, M.* ; Mages, M.* ; Müller, C.* ; Muschket, M.* ; Musolff, A.* ; Norf, H.* ; Pöhlein, F.* ; Reiber, L.* ; Risse-Buhl, U.* ; Schramm, K.-W. ; Schmitt-Jansen, M.* ; Schmitz, M.* ; Strachauer, U.* ; von Tümpling, W.* ; Weber, N. ; Wild, R.* ; Wolf, C.* ; Brauns, M.*
Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach.
Sci. Total Environ. 769:144324 (2021)
Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Ecological Functions ; Effect Based Analyses ; Indicators ; Multiple Stress ; Running Waters
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
2020
HGF-reported in Year
2020
ISSN (print) / ISBN
0048-9697
e-ISSN
1879-1026
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 769,
Issue: ,
Pages: ,
Article Number: 144324
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
20403 - Sustainable Water Management
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504300-002
G-509100-001
Grants
research area Earth and Environment of the Helmholtz Association (Germany)
Copyright
Erfassungsdatum
2021-01-25