PuSH - Publication Server of Helmholtz Zentrum München

Zhou, F.* ; Zheng, B.* ; Wang, F.* ; Cao, A.* ; Xie, S.* ; Chen, X.* ; Schick, J. ; Jin, X.* ; Li, H.*

Genome-wide analysis of MDHAR gene family in four cotton species provides insights into fiber development via regulating AsA redox homeostasis.

Plants 10:227 (2021)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Monodehydroasorbate reductase (MDHAR) (EC1.6.5.4), a key enzyme in ascorbate-glutathione recycling, plays important roles in cell growth, plant development and physiological response to environmental stress via control of ascorbic acid (AsA)-mediated reduction/oxidation (redox) regulation. Until now, information regarding MDHAR function and regulatory mechanism in Gossypium have been limited. Herein, a genome-wide identification and comprehensive bioinformatic analysis of 36 MDHAR family genes in four Gossypium species, Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, were performed, indicating their close evolutionary relationship. Expression analysis of GhMDHARs in different cotton tissues and under abiotic stress and phytohormone treatment revealed diverse expression features. Fiber-specific expression analysis showed that GhMDHAR1A/D, 3A/D and 4A/D were preferentially expressed in fiber fast elongating stages to reach peak values in 15-DPA fibers, with corresponding coincident observances of MDHAR enzyme activity, AsA content and ascorbic acid/dehydroascorbic acid (AsA/DHA) ratio. Meanwhile, there was a close positive correlation between the increase of AsA content and AsA/DHA ratio catalyzed by MDHAR and fiber elongation development in different fiber-length cotton cultivars, suggesting the potential important function of MDHAR for fiber growth. Following H2O2 stimulation, GhMDHAR demonstrated immediate responses at the levels of mRNA, enzyme, the product of AsA and corresponding AsA/DHA value, and antioxidative activity. These results for the first time provide a comprehensive systemic analysis of the MDHAR gene family in plants and the four cotton species and demonstrate the contribution of MDHAR to fiber elongation development by controlling AsA-recycling-mediated cellular redox homeostasis.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Ascorbate Recycling ; Fiber Growth ; Gossypium ; H O 2 2 ; Mdhar Gene Family ; Redox Regulation
ISSN (print) / ISBN 2223-7747
e-ISSN 2223-7747
Journal Plants
Quellenangaben Volume: 10, Issue: 2, Pages: , Article Number: 227 Supplement: ,
Publisher MDPI
Publishing Place Basel, Switzerland
Non-patent literature Publications
Reviewing status Peer reviewed
Grants Science and Technology Project of Bingtuan
National Natural Science Foundation of China