OBJECTIVE: Postprandial lipid profiling (PLP), a risk indicator ofcardiometabolic disease, is based on frequent blood sampling over several hours after a meal, an approach that is invasive and inconvenient. Non-invasive PLP may offer an alternative for disseminated human monitoring. Herein, we investigate the use of clinical Multispectral Optoacoustic Tomography (MSOT) for the non-invasive, label-free PLP via direct lipid-sensing in human vasculature and soft tissues. METHODS: Four (n = 4) subjects (3 females and 1 male, age: 28 ± 7 years) were enrolled in the current pilot study. We longitudinally measured the lipid signals in arteries, veins, skeletal muscles and adipose tissues of all participants at 30 min-intervalsfor 6 hours after the oral consumption of a high-fat meal. RESULTS: Optoacoustic lipid-signal analysis showed on average a 63.4% intra-arterial increase at ∼4 hours postprandially, a 83.9% intra-venous increase at ∼3 hours, a 120.8% intra-muscular increase at ∼3 hours and a 32.8% subcutaneous fat increase at ∼4 hours. CONCLUSION: MSOT provides the potential to study lipid metabolism that could lead to novel diagnostics and prevention strategies by label-free, non-invasive detection of tissue biomarkers implicated in cardiometabolic diseases.
GrantsEC | European Research Council (ERC) European Union’s Horizon 2020 research and innovation programme Deutsches Zentrum fur Herz-Kreislauf-Forschung (German Center for Cardiovascular Research, DZHK) BMBF (German Ministry for Education and Research)