PuSH - Publication Server of Helmholtz Zentrum München

Mayr, C. ; Simon, L. ; Leuschner, G. ; Ansari, M. ; Schniering, J. ; Geyer, P.E.* ; Angelidis, I. ; Strunz, M. ; Singh, P. ; Kneidinger, N. ; Reichenberger, F. ; Silbernagel, E.* ; Böhm, S.* ; Adler, H. ; Lindner, M. ; Maurer, B.* ; Hilgendorff, A. ; Prasse, A.* ; Behr, J. ; Mann, M.* ; Eickelberg, O.* ; Theis, F.J. ; Schiller, H. B.

Integrative analysis of cell state changes in lung fibrosis with peripheral protein biomarkers.

EMBO Mol. Med. 13:e12871 (2021)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The correspondence of cell state changes in diseased organs to peripheral protein signatures is currently unknown. Here, we generated and integrated single-cell transcriptomic and proteomic data from multiple large pulmonary fibrosis patient cohorts. Integration of 233,638 single-cell transcriptomes (n = 61) across three independent cohorts enabled us to derive shifts in cell type proportions and a robust core set of genes altered in lung fibrosis for 45 cell types. Mass spectrometry analysis of lung lavage fluid (n = 124) and plasma (n = 141) proteomes identified distinct protein signatures correlated with diagnosis, lung function, and injury status. A novel SSTR2+ pericyte state correlated with disease severity and was reflected in lavage fluid by increased levels of the complement regulatory factor CFHR1. We further discovered CRTAC1 as a biomarker of alveolar type-2 epithelial cell health status in lavage fluid and plasma. Using cross-modal analysis and machine learning, we identified the cellular source of biomarkers and demonstrated that information transfer between modalities correctly predicts disease status, suggesting feasibility of clinical cell state monitoring through longitudinal sampling of body fluid proteomes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
12.137
2.118
4
14
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Biomarker ; Data Integration ; Fibrosis ; Proteomics ; Single-cell Rna-seq
Language english
Publication Year 2021
HGF-reported in Year 2021
ISSN (print) / ISBN 1757-4676
e-ISSN 1757-4684
Quellenangaben Volume: 13, Issue: 4, Pages: , Article Number: e12871 Supplement: ,
Publisher Wiley
Publishing Place Chichester
Reviewing status Peer reviewed
Institute(s) German Center for Lung Research (DZL)
Institute of Computational Biology (ICB)
Institute of Lung Health and Immunity (LHI)
Institute of Asthma and Allergy Prevention (IAP)
Research Unit Lung Repair and Regeneration (LRR)
POF-Topic(s) 80000 - German Center for Lung Research
30205 - Bioengineering and Digital Health
30202 - Environmental Health
Research field(s) Lung Research
Enabling and Novel Technologies
Allergy
PSP Element(s) G-501800-810
G-503800-001
G-501600-001
G-501600-002
G-503300-001
G-501600-003
G-552100-001
G-503100-005
Grants Bundesministerium fur Bildung und Forschung (BMBF)
Max-Planck-Gesellschaft (MPG)
Helmholtz Association
Deutsche Zentrum für Lungenforschung (DZL)
Scopus ID 85101884526
PubMed ID 33650774
Erfassungsdatum 2021-04-28