PuSH - Publication Server of Helmholtz Zentrum München

Steinberg, J. ; Southam, L. ; Roumeliotis, T.I.* ; Clark, M.J.* ; Jayasuriya, R.L.* ; Swift, D.* ; Shah, K.M.* ; Butterfield, N.C.* ; Brooks, R.A.* ; McCaskie, A.W.* ; Bassett, J.H.D.* ; Williams, G.R.* ; Choudhary, J.S.* ; Wilkinson, J.M.* ; Zeggini, E.

A molecular quantitative trait locus map for osteoarthritis.

Nat. Commun. 12:1309 (2021)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Osteoarthritis causes pain and functional disability for over 500 million people worldwide. To develop disease-stratifying tools and modifying therapies, we need a better understanding of the molecular basis of the disease in relevant tissue and cell types. Here, we study primary cartilage and synovium from 115 patients with osteoarthritis to construct a deep molecular signature map of the disease. By integrating genetics with transcriptomics and proteomics, we discover molecular trait loci in each tissue type and omics level, identify likely effector genes for osteoarthritis-associated genetic signals and highlight high-value targets for drug development and repurposing. These findings provide insights into disease aetiopathology, and offer translational opportunities in response to the global clinical challenge of osteoarthritis.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
14.919
3.055
4
15
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2021
HGF-reported in Year 2021
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 12, Issue: 1, Pages: , Article Number: 1309 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Institute of Translational Genomics (ITG)
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Genetics and Epidemiology
PSP Element(s) G-506700-001
Grants Department of Health
Scopus ID 85101937425
PubMed ID 33637762
Erfassungsdatum 2021-04-28