Soubeyrand, E.* ; Latimer, S.* ; Bernert, A.C.* ; Keene, S.A.* ; Johnson, T.S.* ; Shin, D.* ; Block, A.K.* ; Colquhoun, T.A.* ; Schäffner, A. ; Kim, J.* ; Basset, G.J.*
3-O-glycosylation of kaempferol restricts the supply of the benzenoid precursor of ubiquinone (Coenzyme Q) in Arabidopsis thaliana.
Phytochemistry 186:112738 (2021)
Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and antioxidant in eukaryotes. The recent discovery that kaempferol serves as a precursor for ubiquinone's benzenoid moiety both challenges the conventional view of flavonoids as specialized metabolites, and offers new prospects for engineering ubiquinone in plants. Here, we present evidence that Arabidopsis thaliana mutants lacking kaempferol 3-O-rhamnosyltransferase (ugt78d1) and kaempferol 3-O-glucosyltransferase (ugt78d2) activities display increased de novo biosynthesis of ubiquinone and increased ubiquinone content. These data are congruent with the proposed model that unprotected C-3 hydroxyl of kaempferol triggers the oxidative release of its B-ring as 4-hydroxybenzoate, which in turn is incorporated into ubiquinone. Ubiquinone content in the ugt78d1/ugt78d2 double knockout represented 160% of wild-type level, matching that achieved via exogenous feeding of 4-hydroxybenzoate to wild-type plants. This suggests that 4-hydroxybenzoate is no longer limiting ubiquinone biosynthesis in the ugt78d1/ugt78d2 plants. Evidence is also shown that the glucosylation of 4-hydroxybenzoate as well as the conversion of the immediate precursor of kaempferol, dihydrokaempferol, into dihydroquercetin do not compete with ubiquinone biosynthesis in A. thaliana.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
4-hydroxybenzoate ; Arabidopsis Thaliana ; Benzoates ; Benzoquinones ; Brassicaceae ; Flavonoids ; Functional Genomics ; Kaempferol ; Metabolism ; Ubiquinone ; Udp-carbohydrate-dependent Glycosyltransferases; Hydroxybenzoic Acids; Auxin Transport; Biosynthesis; Gene; Glycosyltransferases; Accumulation; Glucosides; Expression; Ring
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
HGF-reported in Year
2021
ISSN (print) / ISBN
0031-9422
e-ISSN
1873-3700
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 186,
Issue: ,
Pages: ,
Article Number: 112738
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504900-007
Grants
USDA-ARS project
USDA-ARS Floriculture and Nursery Research Initiative
GRFP
National Science Foundation
Copyright
Erfassungsdatum
2021-05-19