PuSH - Publication Server of Helmholtz Zentrum München

Sieberts, S.K.* ; Schaff, J.* ; Duda, M.* ; Pataki, B.Á.* ; Sun, M.* ; Snyder, P.* ; Daneault, J.F.* ; Parisi, F.* ; Costante, G.* ; Rubin, U.* ; Banda, P.* ; Chae, Y.* ; Chaibub Neto, E.* ; Dorsey, E.R.* ; Aydın, Z.* ; Chen, A.* ; Elo, L.L.* ; Espino, C.* ; Glaab, E.* ; Goan, E.* ; Golabchi, F.N.* ; Görmez, Y.* ; Jaakkola, M.K.* ; Jonnagaddala, J.* ; Klén, R.* ; Li, D.* ; McDaniel, C.* ; Perrin, D.* ; Perumal, T.M.* ; Rad, N.M.* ; Rainaldi, E.* ; Sapienza, S.* ; Schwab, P.* ; Shokhirev, N.* ; Venäläinen, M.S.* ; Vergara-Diaz, G.* ; Zhang, Y.* ; Abrami, A.* ; Adhikary, A.* ; Agurto, C.* ; Bhalla, S.* ; Bilgin, H.* ; Caggiano, V.* ; Cheng, J.* ; Deng, E.* ; Gan, Q.* ; Girsa, R.* ; Han, Z.* ; Heisig, S.* ; Huang, K.* ; Jahandideh, S.* ; Kopp, W.* ; Kurz, C.F. ; Lichtner, G.* ; Norel, R.* ; Raghava, G.P.S.* ; Sethi, T.* ; Shawen, N.* ; Tripathi, V.* ; Tsai, M.* ; Wang, T.* ; Wu, Y.* ; Zhang, J.* ; Zhang, X.* ; Wang, Y.* ; Guan, Y.* ; Brunner, D.* ; Bonato, P.* ; Mangravite, L.M.* ; Omberg, L.*

Crowdsourcing digital health measures to predict Parkinson’s disease severity: The Parkinson’s Disease Digital Biomarker DREAM Challenge.

NPJ Digit. Med. 4:53 (2021)
Postprint Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
11.653
4.974
6
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2021
HGF-reported in Year 2021
ISSN (print) / ISBN 2398-6352
e-ISSN 2398-6352
Quellenangaben Volume: 4, Issue: 1, Pages: , Article Number: 53 Supplement: ,
Publisher Nature Publishing Group
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
Research field(s) Genetics and Epidemiology
PSP Element(s) G-505300-002
Scopus ID 85102919216
PubMed ID 33742069
Erfassungsdatum 2021-05-19