PuSH - Publication Server of Helmholtz Zentrum München

Sieberts, S.K.* ; Schaff, J.* ; Duda, M.* ; Pataki, B.Á.* ; Sun, M.* ; Snyder, P.* ; Daneault, J.F.* ; Parisi, F.* ; Costante, G.* ; Rubin, U.* ; Banda, P.* ; Chae, Y.* ; Chaibub Neto, E.* ; Dorsey, E.R.* ; Aydın, Z.* ; Chen, A.* ; Elo, L.L.* ; Espino, C.* ; Glaab, E.* ; Goan, E.* ; Golabchi, F.N.* ; Görmez, Y.* ; Jaakkola, M.K.* ; Jonnagaddala, J.* ; Klén, R.* ; Li, D.* ; McDaniel, C.* ; Perrin, D.* ; Perumal, T.M.* ; Rad, N.M.* ; Rainaldi, E.* ; Sapienza, S.* ; Schwab, P.* ; Shokhirev, N.* ; Venäläinen, M.S.* ; Vergara-Diaz, G.* ; Zhang, Y.* ; Abrami, A.* ; Adhikary, A.* ; Agurto, C.* ; Bhalla, S.* ; Bilgin, H.* ; Caggiano, V.* ; Cheng, J.* ; Deng, E.* ; Gan, Q.* ; Girsa, R.* ; Han, Z.* ; Heisig, S.* ; Huang, K.* ; Jahandideh, S.* ; Kopp, W.* ; Kurz, C.F. ; Lichtner, G.* ; Norel, R.* ; Raghava, G.P.S.* ; Sethi, T.* ; Shawen, N.* ; Tripathi, V.* ; Tsai, M.* ; Wang, T.* ; Wu, Y.* ; Zhang, J.* ; Zhang, X.* ; Wang, Y.* ; Guan, Y.* ; Brunner, D.* ; Bonato, P.* ; Mangravite, L.M.* ; Omberg, L.*

Crowdsourcing digital health measures to predict Parkinson’s disease severity: The Parkinson’s Disease Digital Biomarker DREAM Challenge.

NPJ Digit. Med. 4:53 (2021)
Postprint Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
ISSN (print) / ISBN 2398-6352
e-ISSN 2398-6352
Quellenangaben Volume: 4, Issue: 1, Pages: , Article Number: 53 Supplement: ,
Publisher Nature Publishing Group
Non-patent literature Publications
Reviewing status Peer reviewed