Bulus, N.* ; Brown, K.L.* ; Mernaugh, G.* ; Böttcher, A. ; Dong, X.* ; Sanders, C.R.* ; Pozzi, A.* ; Fässler, R.* ; Zent, R.*
     
    
        
Disruption of the integrin-linked kinase (ILK) pseudokinase domain affects kidney development in mice.
    
    
        
    
    
        
        J. Biol. Chem. 296:100361 (2021)
    
    
    
      
      
	
	    Integrin-linked kinase (ILK), a central component of the intracellular ILK–pinch–parvin complex, localizes together with paxillin to focal adhesions and regulates integrin-mediated cell functions. ILK was initially misclassified as a kinase based on phenotypical characterization of cells expressing ILK mutated in the “kinase” domain, such as the E359K and K220M mutants and a V386G/T387G mutation in the paxillin-binding site (PBS). ILK is now known to be a pseudokinase, and mechanisms of action of these mutants are not clear. We selectively induced expression of only the E359K, PBS, and K220M ILK mutations in the developing kidney collecting system and kidney collecting duct (CD) cells and analyzed their impact on structural integrity using molecular dynamics (MD) simulations. Mice or CD cells carrying the E359K mutation had a severe phenotype that is indistinguishable from ILK-null mice or ILK-null CD cells. The K220M mutant mice developed normally, and K220M-CD cells had a mild adhesion, migration, and tubulogenesis defect. The PBS mutant mice had a subtle developmental defect, and PBS-CD cells had moderate functional abnormalities. Consistent with these observed phenotypes, MD studies suggest that the E359K mutant produces the most structurally perturbed, and K220M the most WT-like ILK molecules. Although all three mutations disrupted ILK binding to parvin and paxillin in vitro, only the E359K mutation decreased ILK binding to pinch suggesting that it increases ILK misfolding. Thus, point mutations in the ILK pseudokinase domain cause functional abnormalities by altering the ILK structure, leading to increased turnover and destabilization of ILK–parvin and (sometimes) ILK–pinch interactions. The integrin-linked kinase (ILK)–pinch–parvin (IPP) complex is a critical component of focal adhesions that binds to the cytoplasmic tail of the integrin β subunits. Integrins, composed of an α and a β subunit, are the principal receptors that mediate cell–extracellular matrix interactions and regulate many cell functions, including adhesion, spreading, migration, polarization, and tubulogenesis. ILK is a 450 amino acid multidomain.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Molecular Dissection; Cell Morphology; Protein; Adhesion; Binding; Dynamics; Reveals; Differentiation; Localization; Generation
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2021
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2021
    
 
    
    
        ISSN (print) / ISBN
        0021-9258
    
 
    
        e-ISSN
        1083-351X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 296,  
	    Issue: ,  
	    Pages: ,  
	    Article Number: 100361 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            American Society for Biochemistry and Molecular Biology
        
 
        
            Publishing Place
            Radarweg 29, 1043 Nx Amsterdam, Netherlands
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30201 - Metabolic Health
    
 
    
        Research field(s)
        Helmholtz Diabetes Center
    
 
    
        PSP Element(s)
        G-502300-001
    
 
    
        Grants
        P30-DK114809
R01 DK119212
R01 DK069921
Senior Research Career Scientist award from the Veteran Affairs
Max Planck Society
ERC Award
VA Merit Awards
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2021-05-19