PuSH - Publication Server of Helmholtz Zentrum München

Interferometric optical fiber sensor for optoacoustic endomicroscopy.

J. Biophotonics 14:e202000501 (2021)
Publ. Version/Full Text DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Optical fiber sensors can offer robust and miniaturized detection of wideband ultrasound, yielding high sensitivity and immunity to electromagnetic interference. However, the lack of cost-effective manufacturing methods prevents the disseminated use of these sensors in biomedical applications. In this study, we developed and optimized a simple method to create optical cavities with high-quality mirrors for acoustic sensing based on micro-manipulation of UV-curable optical adhesives and electroless chemical silver deposition. This approach enables the manufacturing of ultrasound sensors based on Fabry-Pérot Interferometers (FPI) on optical fiber tips with minimal production costs. Characterization and high-resolution optoacoustic imaging experiments show that the manufacturing process yielded a fiber sensor with a small NEP (11 mPa/ Hz ) over a broad detection bandwidth (25 MHz), generally outperforming conventional piezoelectric based transducers. We discuss how the new manufacturing process leads to a high-performance acoustic detector that, due to low cost, can be used as a disposable sensor.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Endomicroscopy ; Fabry-pérot Interferometer ; Optical Fiber Sensor ; Optical Resonator ; Optoacoustic Imaging ; Ultrasound Transducer; Polymer-film; Photoacoustic Microscopy; Ultrasound Sensor
ISSN (print) / ISBN 1864-063X
e-ISSN 1864-0648
Quellenangaben Volume: 14, Issue: 7, Pages: , Article Number: e202000501 Supplement: ,
Publisher Wiley
Publishing Place Postfach 101161, 69451 Weinheim, Germany
Non-patent literature Publications
Reviewing status Peer reviewed
Grants Horizon 2020 Framework Programme