Machine learning for perturbational single-cell omics.
Cell Syst. 12, 522-537 (2021)
Cell biology is fundamentally limited in its ability to collect complete data on cellular phenotypes and the wide range of responses to perturbation. Areas such as computer vision and speech recognition have addressed this problem of characterizing unseen or unlabeled conditions with the combined advances of big data, deep learning, and computing resources in the past 5 years. Similarly, recent advances in machine learning approaches enabled by single-cell data start to address prediction tasks in perturbation response modeling. We first define objectives in learning perturbation response in single-cell omics; survey existing approaches, resources, and datasets (https://github.com/theislab/sc-pert); and discuss how a perturbation atlas can enable deep learning models to construct an informative perturbation latent space. We then examine future avenues toward more powerful and explainable modeling using deep neural networks, which enable the integration of disparate information sources and an understanding of heterogeneous, complex, and unseen systems.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Review
Thesis type
Editors
Keywords
Cell State ; Deep Learning ; Drug ; Heterogeneous Systems ; Machine Learning ; Perturbation ; Single-cell; Rna-seq Data; Drug-sensitivity; Model; Prediction; Target; Identification; Heterogeneity; Combinations; Phenotypes; Signatures
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
0
HGF-reported in Year
2021
ISSN (print) / ISBN
2405-4712
e-ISSN
2405-4720
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 12,
Issue: 6,
Pages: 522-537
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Maryland Heights, MO
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503800-001
Grants
Helmholtz Association's Initiative and Networking Fund through sparse2big
Helmholtz Association's Initiative and Networking Fund through Helmholtz AI
BMBF
Silicon Valley Community Foundation
Chan Zuckerberg Initiative DAF
Copyright
Erfassungsdatum
2021-07-13