In silico numerical simulation of ventilator settings during high-frequency ventilation in preterm infants.
Pediatr. Pulmonol., DOI: 10.1002/ppul.25626 (2021)
Objective: Despite the routine use of antenatal steroids, exogenous surfactants, and different noninvasive ventilation methods, many extremely low gestational age neonates, preterm, and term infants eventually require invasive ventilation. In addition to prematurity, mechanical ventilation itself can induce ventilator-induced lung injury leading to lifelong pulmonary sequelae. Besides conventional mechanical ventilation, high-frequency oscillatory ventilation (HFOV) with tidal volumes below dead space and high ventilation frequencies is used either as a primary or rescue therapy in severe neonatal respiratory failure. Methods and Results: Applying a high-resolution computational lung modeling technique in a preterm infant, we studied three different high-frequency ventilation settings as well as conventional ventilation (CV) settings. Evaluating the computed oxygen delivery (OD) and lung mechanics (LM) we outline for the first time how changing ventilator settings from CV to HFOV lead to significant improvements in OD and LM. Conclusion: This personalized “digital twin” strategy advances our general knowledge of protective ventilation strategies in neonatal care and can support decisions on various modes of ventilatory therapy at high frequencies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Bronchopulmonary Dysplasia ; High-frequency Oscillatory Ventilation ; Mechanical Ventilation ; Numeric Simulation ; Preterm Infant; Chronic Lung-disease; Oscillatory Ventilation; Gas-transport; Pressure; Prevention
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
HGF-reported in Year
2021
ISSN (print) / ISBN
8755-6863
e-ISSN
1099-0496
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume:
Issue:
Pages:
Article Number:
Supplement:
Series
Publisher
Wiley
Publishing Place
111 River St, Hoboken 07030-5774, Nj Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Lung Research
PSP Element(s)
G-552100-001
Grants
Bundesministerium für Wissenschaft und Forschung
Copyright
Erfassungsdatum
2021-09-22