Kaiser, R.* ; Leunig, A.* ; Pekayvaz, K.* ; Popp, O.* ; Joppich, M.* ; Polewka, V.* ; Escaig, R.* ; Anjum, A.* ; Hoffknecht, M.L.* ; Gold, C.* ; Brambs, S.* ; Engel, A.* ; Stockhausen, S.* ; Knottenberg, V.* ; Titova, A.* ; Haji, M.* ; Scherer, C.* ; Muenchhoff, M.* ; Hellmuth, J.C.* ; Saar, K.* ; Schubert, B. ; Hilgendorff, A. ; Schulz, C.* ; Kääb, S.* ; Zimmer, R.* ; Hübner, N.* ; Massberg, S.* ; Mertins, P.* ; Nicolai, L.* ; Stark, K.*
Self-sustaining interleukin-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19.
JCI insight 6:e150862 (2021)
Neutrophils provide a critical line of defense in immune responses to various pathogens, but also inflict self-damage upon transition to a hyperactivated, procoagulant state. Recent work has highlighted proinflammatory neutrophil phenotypes contributing to lung injury and acute respiratory distress syndrome (ARDS) in patients suffering from COVID-19. Here, we utilize state-of-the art mass spectrometry-based proteomics, transcriptomic and correlative analyses as well as functional in vitro and in vivo studies to dissect how neutrophils contribute to the progression to severe COVID-19. We identify a reinforcing loop of both systemic and neutrophil intrinsic interleukin-8 (CXCL8/IL-8) dysregulation, which initiates and perpetuates neutrophil-driven immunopathology. This positive feedback loop of systemic and neutrophil autocrine IL-8 production leads to an activated, prothrombotic neutrophil phenotype characterized by degranulation and neutrophil extracellular trap (NET) formation. In severe COVID-19, neutrophils directly initiate the coagulation and complement cascade, highlighting a link to the immunothrombotic state observed in these patients. Targeting the IL-8-CXCR-1/-2 axis interferes with this vicious cycle and attenuates neutrophil activation, degranulation, NETosis, and IL-8 release. Finally, we show that blocking IL-8-like signaling reduces SARS-CoV-2 spike protein-induced, hACE2-dependent pulmonary microthrombosis in mice. In summary, our data provide comprehensive insights into the activation mechanisms of neutrophils in COVID-19 and uncover a self-sustaining neutrophil-IL-8-axis as promising therapeutic target in severe SARS-CoV-2 infection.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Covid-19 ; Cytokines ; Neutrophils ; Proteomics ; Vascular Biology; Converting Enzyme; Spike Protein; Lung Injury; P-selectin; Activation; Inhibition; Receptor; Cxcr1; Ace2; Thrombosis
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
HGF-reported in Year
2021
ISSN (print) / ISBN
2379-3708
e-ISSN
2379-3708
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 6,
Issue: 18,
Pages: ,
Article Number: e150862
Supplement: ,
Series
Publisher
Clarivate
Publishing Place
Ann Arbor, Michigan
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
30202 - Environmental Health
Research field(s)
Enabling and Novel Technologies
Lung Research
PSP Element(s)
G-503800-001
G-552100-001
Grants
Federal Ministry of Education and Research (BMBF)
Deutsche Forschungsgemeinschaft (DFG)
DFG
DFG Clinician Scientist Programme PRIME
DZHK
European Research Council under the European Union Horizon 2020 research and innovation progamme
German Ministry of Education and Research (BMBF), as part of the National Research Node "Mass spectrometry in Systems Medicine" (MSCoresys)
COMBAT C19IR study group
Deutsche Herzstiftung e.V
Copyright
Erfassungsdatum
2021-10-04