Nho, K.* ; Kueider-Paisley, A.* ; Arnold, M. ; MahmoudianDehkordi, S.* ; Risacher, S.L.* ; Louie, G.* ; Blach, C.* ; Baillie, R.* ; Han, X.* ; Kastenmüller, G. ; Doraiswamy, P.M.* ; Kaddurah-Daouk, R.* ; Saykin, A.J.*
Serum metabolites associated with brain amyloid beta deposition, cognition and dementia progression.
Brain Commun. 3:fcab139 (2021)
Metabolomics in the Alzheimer's Disease Neuroimaging Initiative cohort provides a powerful tool for mapping biochemical changes in Alzheimer's disease, and a unique opportunity to learn about the association between circulating blood metabolites and brain amyloid-β deposition in Alzheimer's disease. We examined 140 serum metabolites and their associations with brain amyloid-β deposition, cognition and conversion from mild cognitive impairment to Alzheimer's disease in the Alzheimer's Disease Neuroimaging Initiative. Processed [18F] Florbetapir PET images were used to perform a voxel-wise statistical analysis of the effect of metabolite levels on amyloid-β accumulation across the whole brain. We performed a multivariable regression analysis using age, sex, body mass index, apolipoprotein E ε4 status and study phase as covariates. We identified nine metabolites as significantly associated with amyloid-β deposition after multiple comparison correction. Higher levels of one acylcarnitine (C3; propionylcarnitine) and one biogenic amine (kynurenine) were associated with decreased amyloid-β accumulation and higher memory scores. However, higher levels of seven phosphatidylcholines (lysoPC a C18:2, PC aa C42:0, PC ae C42:3, PC ae C44:3, PC ae C44:4, PC ae C44:5 and PC ae C44:6) were associated with increased brain amyloid-β deposition. In addition, higher levels of PC ae C44:4 were significantly associated with lower memory and executive function scores and conversion from mild cognitive impairment to Alzheimer's disease dementia. Our findings suggest that dysregulation of peripheral phosphatidylcholine metabolism is associated with earlier pathological changes noted in Alzheimer's disease as measured by brain amyloid-β deposition as well as later clinical features including changes in memory and executive functioning. Perturbations in phosphatidylcholine metabolism may point to issues with membrane restructuring leading to the accumulation of amyloid-β in the brain. Additional studies are needed to explore whether these metabolites play a causal role in the pathogenesis of Alzheimer's disease or if they are biomarkers for systemic changes during preclinical phases of the disease.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Alzheimer’s Disease ; Amyloid-β ; Cognition ; Metabolomics ; Phosphatidylcholine Metabolism
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
HGF-reported in Year
2021
ISSN (print) / ISBN
2632-1297
e-ISSN
2632-1297
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 3,
Issue: 3,
Pages: ,
Article Number: fcab139
Supplement: ,
Series
Publisher
Oxford University Press
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503891-001
Grants
Copyright
Erfassungsdatum
2021-09-01