Rocchi, A.* ; Carminati, E.* ; De Fusco, A.* ; Kowalska, J.A.* ; Floss, T. ; Benfenati, F.*
REST/NRSF deficiency impairs autophagy and leads to cellular senescence in neurons.
Aging Cell, DOI: 10.1111/acel.13471:e13471 (2021)
During aging, brain performances decline. Cellular senescence is one of the aging drivers and a key feature of a variety of human age-related disorders. The transcriptional repressor RE1-silencing transcription factor (REST) has been associated with aging and higher risk of neurodegenerative disorders. However, how REST contributes to the senescence program and functional impairment remains largely unknown. Here, we report that REST is essential to prevent the senescence phenotype in primary mouse neurons. REST deficiency causes failure of autophagy and loss of proteostasis, increased oxidative stress, and higher rate of cell death. Re-establishment of autophagy reverses the main hallmarks of senescence. Our data indicate that REST has a protective role in physiological aging by regulating the autophagic flux and the senescence program in neurons, with implications for neurological disorders associated with aging.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Autophagy ; Mitochondria ; Neurons ; Oxidative Stress ; Rapamycin ; Rest/nrsf ; Senescence ; Trehalose; Rest; Abnormalities; Activation; Features
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
HGF-reported in Year
2021
ISSN (print) / ISBN
1474-9718
e-ISSN
1474-9726
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: ,
Issue: ,
Pages: ,
Article Number: e13471
Supplement: ,
Series
Publisher
Wiley
Publishing Place
111 River St, Hoboken 07030-5774, Nj Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30204 - Cell Programming and Repair
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-500500-001
Grants
Compagnia di San Paolo Torino
Ministero Istruzione, Universita e Ricerca
Ministero della Salute Ricerca Finalizzata
Copyright
Erfassungsdatum
2021-10-11