as soon as is submitted to ZB.
Surface-tension-induced budding drives alveologenesis in human mammary gland organoids.
Nat. Phys. 17, 1130-1136 (2021)
Organ development involves complex shape transformations driven by active mechanical stresses that sculpt the growing tissue1,2. Epithelial gland morphogenesis is a prominent example where cylindrical branches transform into spherical alveoli during growth3–5. Here we show that this shape transformation is induced by a local change from anisotropic to isotropic tension within the epithelial cell layer of developing human mammary gland organoids. By combining laser ablation with optical force inference and theoretical analysis, we demonstrate that circumferential tension increases at the expense of axial tension through a reorientation of cells that correlates with the onset of persistent collective rotation around the branch axis. This enables the tissue to locally control the onset of a generalized Rayleigh–Plateau instability, leading to spherical tissue buds6. The interplay between cell motion, cell orientation and tissue tension is a generic principle that may turn out to drive shape transformations in other cell tissues.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Cell; Matrix
ISSN (print) / ISBN
1745-2473
e-ISSN
1745-2481
Journal
Nature Physics
Quellenangaben
Volume: 17,
Issue: 10,
Pages: 1130-1136
Publisher
Springer
Publishing Place
Heidelberger Platz 3, Berlin, 14197, Germany
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Institute of Stem Cell Research (ISF)