Hoene, M.* ; Kappler, L.* ; Kollipara, L.* ; Hu, C.* ; Irmler, M. ; Bleher, D.* ; Hoffmann, C.* ; Beckers, J. ; Hrabě de Angelis, M. ; Häring, H.-U. ; Birkenfeld, A.L. ; Peter, A. ; Sickmann, A.* ; Xu, G.* ; Lehmann, R. ; Weigert, C.
Exercise prevents fatty liver by modifying the compensatory response of mitochondrial metabolism to excess substrate availability.
Mol. Metab. 54:101359 (2021)
OBJECTIVE: Liver mitochondria adapt to high calorie intake. We investigated how exercise alters the early compensatory response of mitochondria and thus prevents fatty liver disease as a long-term consequence of overnutrition. METHODS: We compared the effects of a steatogenic high-energy diet (HED, for 6 weeks) on mitochondrial metabolism of sedentary and treadmill-trained C57BL/6N mice. We applied multi-OMICs analyses to study the alterations in the proteome, transcriptome and lipids in isolated mitochondria of liver and skeletal muscle as well as in whole tissue and examined the functional consequences by high resolution respirometry. RESULTS: HED increased the respiratory capacity of isolated liver mitochondria, both in sedentary and in trained mice. However, proteomics analysis of the mitochondria and transcriptomics indicated that training modified the adaptation of the hepatic metabolism to HED on the level of respiratory complex I, glucose oxidation, pyruvate and acetyl-CoA metabolism and lipogenesis. Training also counteracted the HED-induced increase in fasting insulin, glucose tolerance, and liver fat. This was accompanied by lower diacylglycerol species and JNK phosphorylation in the livers of trained HED-fed mice, two mechanisms that can reverse hepatic insulin resistance. In skeletal muscle, the combination of HED and training improved the oxidative capacity to a greater extent than training alone by increasing respiration of isolated mitochondria and total mitochondrial protein content. CONCLUSION: We provide a comprehensive insight into the early adaptations of mitochondria in liver and skeletal muscle to HED and endurance training. Our results suggest that exercise disconnects the HED-induced increase in mitochondrial substrate oxidation from pyruvate and acetyl-CoA-driven lipid synthesis. This could contribute to the prevention of deleterious long-term effects of high fat and sugar intake on hepatic mitochondrial function and insulin sensitivity.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Mafld ; Acetyl-coa ; Exercise ; Lipidomics ; Mitochondrial Supercomplexes ; Proteomics; Hepatic Insulin-resistance; Skeletal-muscle; Sample Preparation; Amino-acid; Tca Cycle; Diet; Mechanisms; Disease; Steatohepatitis; Overexpression
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
HGF-reported in Year
2021
ISSN (print) / ISBN
2212-8778
e-ISSN
2212-8778
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 54,
Issue: ,
Pages: ,
Article Number: 101359
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Amsterdam
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
90000 - German Center for Diabetes Research
30201 - Metabolic Health
Research field(s)
Helmholtz Diabetes Center
Genetics and Epidemiology
PSP Element(s)
G-502400-001
G-500600-004
G-500600-001
Grants
Helmholtz Alliance 'Aging and Metabolic Programming, AMPro'
Der Regierende Burgermeister von Berlin, Senatskanzlei Wissenschaft und Forschung
Ministerium fur Kultur und Wissenschaft des Landes Nordrhein-Westfalen
National Natural Science Foundation of China
Innovation Program from DICP
Mobility Programme of the Sino-German Center for Research Promotion
German Federal Ministry of Education and Research (BMBF) to the German Centre for Diabetes Research
Copyright
Erfassungsdatum
2021-12-07