PuSH - Publication Server of Helmholtz Zentrum München

Kaydanov, N.* ; Perevoschikov, S.* ; German, S.V.* ; Romanov, S.A.* ; Ermatov, T.* ; Kozyrev, A.A.* ; Cvjetinovic, J.* ; MacHnev, A.* ; Noskov, R.E.* ; Kosolobov, S.S.* ; Skibina, J.S.* ; Nasibulin, A.G.* ; Zakian Dominguez, C.M. ; Lagoudakis, P.G.* ; Gorin, D.A.*

Optoacoustic effect in a hybrid multilayered membrane deposited on a hollow-core microstructured optical waveguide.

ACS Photonics 8, 3346–3356 (2021)
DOI
Modern imaging technologies, including optoacoustic endoscopy, are based on the optoacoustic effect. Much promise is offered by the all-optical fiber-based approach, because fiber has a miniature cross section, is highly sensitive, and can be used in a variety of imaging and therapeutic techniques. We developed a probe based on a hollow-core microstructured optical waveguide (HC-MOW) with a hybrid nanostructured membrane. The membrane consisted of a free-standing single-walled carbon nanotube film and a Bragg reflector, which can be used as a source and a detector of ultrasound. Membrane vibrations were excited with an IR laser pulse and were read out by recording the intensity of the reflected visible CW laser light. We explained the nature of the intensity modulation of the reflected light and supported our explanation with numerical simulations of the membrane's vibration eigenfrequencies and thermal distribution. The membrane vibrations were also observed with raster-scanning optoacoustic mesoscopy. The transmittance of the HC-MOW between 400 nm and 6.5 μm and that of the hybrid nanostructured membrane in the NIR range enable potential optoacoustic sensing in the IR fingerprint region of biomolecules. This permits the optoacoustic probe to be used for medical endoscopic purposes.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords All-optical Probe ; Hollow-core Microstructured Optical Waveguide ; Hybrid Multilayered Membrane ; Laser-induced Ultrasonics ; Optoacoustic Effect ; Vibrational Eigenfrequency; Carbon Nanotubes; Tomography; Vivo; Plaques; Conductivity; Sensitivity; Networks; Model; Probe; Films
ISSN (print) / ISBN 2330-4022
e-ISSN 2330-4022
Journal ACS Photonics
Quellenangaben Volume: 8, Issue: 11, Pages: 3346–3356 Article Number: , Supplement: ,
Publisher American Chemical Society (ACS)
Publishing Place 1155 16th St, Nw, Washington, Dc 20036 Usa
Non-patent literature Publications
Reviewing status Peer reviewed
Grants Russian Foundation for Basic Research