Wide-field mid-infrared hyperspectral imaging
by snapshot phase contrast measurement of
optothermal excitation.
Anal. Chem. 93, 15323-15330 (2021)
Vibrational microscopy methods based on Raman scattering or infrared absorption provide a label-free approach for chemical-contrast imaging, but employ point-by-point scanning and impose a compromise between the imaging speed and field-of-view (FOV). Optothermal microscopy has been proposed as a promising imaging modality to avoid this compromise, although at restrictively small FOVs capable of imaging only few cells. Here, we present wide-field optothermal mid-infrared microscopy (WOMiM) for wide-field chemical-contrast imaging based on snapshot pump-probe detection of optothermal signal, using a custom-made condenser-free phase contrast microscopy to capture the phase change of samples after mid-infrared irradiation. We achieved chemical contrast for FOVs up to 180 μm in diameter, yielding 10-fold larger imaging areas than the state-of-the-art, at imaging speeds of 1 ms/frame. The maximum possible imaging speed of WOMiM was determined by the relaxation time of optothermal heat, measured to be 32.8 μs in water, corresponding to a frame rate of μ30 kHz. This proof-of-concept demonstrates that vibrational imaging can be achieved at an unprecedented imaging speed and large FOV with the potential to significantly facilitate label-free imaging of cellular dynamics.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Lipid Bodies; Raman; Association; Transport; Fiber
Keywords plus
Language
english
Publication Year
2021
Prepublished in Year
HGF-reported in Year
2021
ISSN (print) / ISBN
0003-2700
e-ISSN
1520-6882
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 93,
Issue: 46,
Pages: 15323-15330
Article Number: ,
Supplement: ,
Series
Publisher
American Chemical Society (ACS)
Publishing Place
1155 16th St, Nw, Washington, Dc 20036 Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505500-001
Grants
Copyright
Erfassungsdatum
2021-12-21