Ringeling, F.R.* ; Chakraborty, S.* ; Vissers, C.* ; Reiman, D.* ; Patel, A.M.* ; Lee, K.H.* ; Hong, A.* ; Park, C.W.* ; Reska, T.* ; Gagneur, J. ; Chang, H.* ; Spletter, M.L.* ; Yoon, K.J.* ; Ming, G.l.* ; Song, H.* ; Canzar, S.*
Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data.
Nat. Biotechnol. 40, 741–750 (2022)
The accuracy of methods for assembling transcripts from short-read RNA sequencing data is limited by the lack of long-range information. Here we introduce Ladder-seq, an approach that separates transcripts according to their lengths before sequencing and uses the additional information to improve the quantification and assembly of transcripts. Using simulated data, we show that a kallisto algorithm extended to process Ladder-seq data quantifies transcripts of complex genes with substantially higher accuracy than conventional kallisto. For reference-based assembly, a tailored scheme based on the StringTie2 algorithm reconstructs a single transcript with 30.8% higher precision than its conventional counterpart and is more than 30% more sensitive for complex genes. For de novo assembly, a similar scheme based on the Trinity algorithm correctly assembles 78% more transcripts than conventional Trinity while improving precision by 78%. In experimental data, Ladder-seq reveals 40% more genes harboring isoform switches compared to conventional RNA sequencing and unveils widespread changes in isoform usage upon m6A depletion by Mettl14 knockout.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Intron Retention; Gene; Isoform; Landscape; Stringtie
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
HGF-reported in Year
2022
ISSN (print) / ISBN
1087-0156
e-ISSN
1546-1696
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 40,
Issue: ,
Pages: 741–750
Article Number: ,
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
New York, NY
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503800-001
Grants
Simons Foundation
U.S. Department of Health & Human Services | National Institutes of Health (NIH)
Copyright
Erfassungsdatum
2022-02-07