PuSH - Publication Server of Helmholtz Zentrum München

Ringeling, F.R.* ; Chakraborty, S.* ; Vissers, C.* ; Reiman, D.* ; Patel, A.M.* ; Lee, K.H.* ; Hong, A.* ; Park, C.W.* ; Reska, T.* ; Gagneur, J. ; Chang, H.* ; Spletter, M.L.* ; Yoon, K.J.* ; Ming, G.l.* ; Song, H.* ; Canzar, S.*

Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data.

Nat. Biotechnol. 40, 741–750 (2022)
Postprint Research data DOI PMC
Open Access Green
The accuracy of methods for assembling transcripts from short-read RNA sequencing data is limited by the lack of long-range information. Here we introduce Ladder-seq, an approach that separates transcripts according to their lengths before sequencing and uses the additional information to improve the quantification and assembly of transcripts. Using simulated data, we show that a kallisto algorithm extended to process Ladder-seq data quantifies transcripts of complex genes with substantially higher accuracy than conventional kallisto. For reference-based assembly, a tailored scheme based on the StringTie2 algorithm reconstructs a single transcript with 30.8% higher precision than its conventional counterpart and is more than 30% more sensitive for complex genes. For de novo assembly, a similar scheme based on the Trinity algorithm correctly assembles 78% more transcripts than conventional Trinity while improving precision by 78%. In experimental data, Ladder-seq reveals 40% more genes harboring isoform switches compared to conventional RNA sequencing and unveils widespread changes in isoform usage upon m6A depletion by Mettl14 knockout.
Impact Factor
Scopus SNIP
Altmetric
68.164
7.029
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Intron Retention; Gene; Isoform; Landscape; Stringtie
Language english
Publication Year 2022
HGF-reported in Year 2022
ISSN (print) / ISBN 1087-0156
e-ISSN 1546-1696
Quellenangaben Volume: 40, Issue: , Pages: 741–750 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place New York, NY
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
Grants Simons Foundation
U.S. Department of Health & Human Services | National Institutes of Health (NIH)
Scopus ID 85122675318
PubMed ID 35013600
Erfassungsdatum 2022-02-07