PuSH - Publication Server of Helmholtz Zentrum München

Treatment planning study for microbeam radiotherapy using clinical patient data.

Cancers 14:685 (2022)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Microbeam radiotherapy (MRT) is a novel, still preclinical dose delivery technique. MRT has shown reduced normal tissue effects at equal tumor control rates compared to conventional radiotherapy. Treatment planning studies are required to permit clinical application. The aim of this study was to establish a dose comparison between MRT and conventional radiotherapy and to identify suitable clinical scenarios for future applications of MRT. We simulated MRT treatment scenarios for clinical patient data using an inhouse developed planning algorithm based on a hybrid Monte Carlo dose calculation and implemented the concept of equivalent uniform dose (EUD) for MRT dose evaluation. The investigated clinical scenarios comprised fractionated radiotherapy of a glioblastoma resection cavity, a lung stereotactic body radiotherapy (SBRT), palliative bone metastasis irradiation, brain metastasis radiosurgery and hypofractionated breast cancer radiotherapy. Clinically acceptable treatment plans were achieved for most analyzed parameters. Lung SBRT seemed the most challenging treatment scenario. Major limitations comprised treatment plan optimization and dose calculation considering the tissue microstructure. This study presents an im-portant step of the development towards clinical MRT. For clinical treatment scenarios using a so-phisticated dose comparison concept based on EUD and EQD2, we demonstrated the capability of MRT to achieve clinically acceptable dose distributions.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Dose Calculation ; Equivalent Uniform Dose ; Microbeam Radiotherapy ; Software Development ; Spatial Fractionation ; Treatment Planning; Linear-quadratic Model; Radiation-therapy; Dose Distribution; Normal Tissue; Beam; Dosimetry; Efficacy; Tumors; Water
ISSN (print) / ISBN 2072-6694
Journal Cancers
Quellenangaben Volume: 14, Issue: 3, Pages: , Article Number: 685 Supplement: ,
Publisher MDPI
Publishing Place St Alban-anlage 66, Ch-4052 Basel, Switzerland
Non-patent literature Publications
Reviewing status Peer reviewed
Grants China Scholarship Council (CSC) grant
Scholarship of the German Cancer Consortium (DKTK)
German Research Foundation (Deutsche Forschungsgemeinschaft) through the Emmy Noether Programme
German Cancer Consortium DKTK