PuSH - Publication Server of Helmholtz Zentrum München

Nakatani, T. ; Lin, J. ; Ji, F.* ; Ettinger, A. ; Pontabry, J. ; Tokoro, M.* ; Altamirano-Pacheco, L. ; Fiorentino, J. ; Mahammadov, E. ; Hatano, Y.* ; Van Rechem, C.* ; Chakraborty, D.* ; Ruiz-Morales, E.R. ; Scialdone, A. ; Yamagata, K.* ; Whetstine, J.R.* ; Sadreyev, R.I.* ; Torres-Padilla, M.E.

DNA replication fork speed underlies cell fate changes and promotes reprogramming.

Nat. Genet. 54, 318–327 (2022)
Publ. Version/Full Text Research data DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Totipotency emerges in early embryogenesis, but its molecular underpinnings remain poorly characterized. In the present study, we employed DNA fiber analysis to investigate how pluripotent stem cells are reprogrammed into totipotent-like 2-cell-like cells (2CLCs). We show that totipotent cells of the early mouse embryo have slow DNA replication fork speed and that 2CLCs recapitulate this feature, suggesting that fork speed underlies the transition to a totipotent-like state. 2CLCs emerge concomitant with DNA replication and display changes in replication timing (RT), particularly during the early S-phase. RT changes occur prior to 2CLC emergence, suggesting that RT may predispose to gene expression changes and consequent reprogramming of cell fate. Slowing down replication fork speed experimentally induces 2CLCs. In vivo, slowing fork speed improves the reprogramming efficiency of somatic cell nuclear transfer. Our data suggest that fork speed regulates cellular plasticity and that remodeling of replication features leads to changes in cell fate and reprogramming.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
41.307
6.722
10
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Embryonic-like Cells; Genome Activation; Nuclear Transfer; Mouse Oocytes; Chromatin; Dynamics; Transcription; Domains; Choice; Genes
Language english
Publication Year 2022
HGF-reported in Year 2022
ISSN (print) / ISBN 1061-4036
e-ISSN 1546-1718
Journal Nature Genetics
Quellenangaben Volume: 54, Issue: , Pages: 318–327 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place New York, NY
Reviewing status Peer reviewed
POF-Topic(s) 30204 - Cell Programming and Repair
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
Research field(s) Stem Cell and Neuroscience
Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP Element(s) G-506200-001
G-506290-001
G-503800-001
G-502800-001
Grants NIDDK NIH HHS
U.S. Department of Health & Human Services | National Institutes of Health (NIH)
MEXT | Japan Society for the Promotion of Science (JSPS)
Deutsche Forschungsgemeinschaft (German Research Foundation)
Helmholtz Association
Scopus ID 85125714680
PubMed ID 35256805
Erfassungsdatum 2022-04-22