Alka, O.* ; Shanthamoorthy, P.* ; Witting, M. ; Kleigrewe, K.* ; Kohlbacher, O.* ; Röst, H.L.*
DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics.
Nat. Commun. 13:1347 (2022)
The extraction of meaningful biological knowledge from high-throughput mass spectrometry data relies on limiting false discoveries to a manageable amount. For targeted approaches in metabolomics a main challenge is the detection of false positive metabolic features in the low signal-to-noise ranges of data-independent acquisition results and their filtering. Another factor is that the creation of assay libraries for data-independent acquisition analysis and the processing of extracted ion chromatograms have not been automated in metabolomics. Here we present a fully automated open-source workflow for high-throughput metabolomics that combines data-dependent and data-independent acquisition for library generation, analysis, and statistical validation, with rigorous control of the false-discovery rate while matching manual analysis regarding quantification accuracy. Using an experimentally specific data-dependent acquisition library based on reference substances allows for accurate identification of compounds and markers from data-independent acquisition data in low concentrations, facilitating biomarker quantification.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
HGF-reported in Year
2022
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 13,
Issue: 1,
Pages: ,
Article Number: 1347
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
30202 - Environmental Health
Research field(s)
Enabling and Novel Technologies
Environmental Sciences
PSP Element(s)
G-505700-001
G-504800-001
Grants
University of Toronto
Bundesministerium für Bildung und Forschung
Eberhard Karls Universität Tübingen
natural sciences and engineering research council of canada
Canadian Institutes of Health Research
Government of Canada
NFRF
Copyright
Erfassungsdatum
2022-04-28