PuSH - Publication Server of Helmholtz Zentrum München

Hauffe, R.* ; Rath, M.* ; Agyapong, W.* ; Jonas, W.* ; Vogel, H.* ; Schulz, T.J.* ; Schwarz, M.* ; Kipp, A.P.* ; Blüher, M. ; Kleinridders, A.*

Obesity hinders the protective effect of selenite supplementation on insulin signaling.

Antioxidants 11:862 (2022)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Adipose Tissue ; Insulin ; Insulin Resistance ; Obesity ; Selenite
ISSN (print) / ISBN 2076-3921
e-ISSN 2076-3921
Journal Antioxidants
Quellenangaben Volume: 11, Issue: 5, Pages: , Article Number: 862 Supplement: ,
Publisher MDPI
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)