Szmul, A.* ; Papiez, B.W.* ; Matin, T.* ; Gleeson, F.V.* ; Schnabel, J.A.* ; Grau, V.*
    
    
        
Regional lung ventilation estimation based on supervoxel tracking.
    
    
        
    
    
        
        Proc. SPIE 10576 (2018)
    
    
    
      
      
	
	    In the case of lung cancer, an assessment of regional lung function has the potential to guide more accurate radiotherapy treatment. This could spare well-functioning parts of the lungs, as well as be used for follow up. In this paper we present a novel approach for regional lung ventilation estimation from dynamic lung CT imaging, which might be used during radiotherapy planning. Our method combines a supervoxel-based image representation with deformable image registration, performed between peak breathing phases, for which we track changes in intensity of previously extracted supervoxels. Such a region-oriented approach is expected to be more physiologically consistent with lung anatomy than previous methods relying on voxel-wise relationships, as it has the potential to mimic the lung anatomy. Our results are compared with static ventilation images acquired from hyperpolarized Xenon129 MRI. In our study we use three patient datasets consisting of 4DCT and XeMRI. We achieve higher correlation (0.487) compared to the commonly used method for estimating ventilation performed in a voxel-wise manner (0.423) on average based on global correlation coefficients. We also achieve higher correlation values for our method when ventilated/non-ventilated regions of lungs are investigated. The increase of the number of layers of supervoxels further improves our results, with one layer achieving 0.393, compared to 0.487 for 15 layers. Overall, we have shown that our method achieves higher correlation values compared to the previously used approach, when correlated with XeMRI.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Image Registration ; Lung Ventilation Estimation ; Supervoxels ; Tracking
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2018
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2018
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 10576 
	    Issue: ,  
	    Pages: ,  
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            SPIE
        
 
        
            Publishing Place
            
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-507100-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2022-09-07