Open Access Green as soon as Postprint is submitted to ZB.
		
    New calculations for internal dosimetry of beta-emitting radiopharmaceuticals.
        
        Radiat. Prot. Dosim. 139, 245-249 (2010)
    
    
    
	    The calculation of absorbed dose from internally incorporated radionuclides is based on the so-called specific absorbed fractions (SAFs) which represent the fraction of energy emitted in a given source region that is absorbed per unit mass in a specific target organ. Until recently, photon SAFs were calculated using MIRD-type mathematical phantoms. For electrons, the energy released was assumed to be absorbed locally ('ICRP 30 approach'). For this work, photon and electron SAFs were derived with Monte Carlo simulations in the new male voxel-based reference computational phantom adopted by the ICRP and ICRU. The present results show that the assumption of electrons being locally absorbed is not always true at energies above 300-500 keV. For source/target organ pairs in close vicinity, high-energy electrons escaping from the source organ may result in cross-fire electron SAFs in the same order of magnitude as those from photons. Examples of organ absorbed doses per unit activity are given for (18)F-choline and (123)I-iodide. The impact of the new electron SAFs used for absorbed dose calculations compared with the previously used assumptions was found to be small. The organ dose coefficients for the two approaches differ by not more than 6 % for most organs. Only for irradiation of the urinary bladder wall by activity in the contents, the ICRP 30 approach presents an overestimation of approximately 40-50%.
	
	
      Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Times Cited
Scopus
Cited By
		Cited By
Altmetric
		
	    0.707
		0.590
		9
		10
		
	    Annotations
	    
		
		     
		    
		
	    
	
		
	
	    Special Publikation
	    
		
		     
		
	    
	
	
	
	    Hide on homepage
	    
		
		     
		
	    
	
	
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
     
    
    
        Keywords
        Beta Particles; Body Burden*; Computer Simulation; Humans; Male; Models; Biological*; Radiation Dosage; Radiometry/methods*; Radiopharmaceuticals/analysis*; Radiopharmaceuticals/diagnostic use; Radiopharmaceuticals/pharmacokinetics*; Whole-Body Counting/methods*
    
 
     
    
    
        Language
        
    
 
    
        Publication Year
        2010
    
 
     
    
        HGF-reported in Year
        2010
    
 
    
    
        ISSN (print) / ISBN
        0144-8420
    
 
    
        e-ISSN
        1742-3406
    
 
    
     
     
	     
	 
	 
    
        Journal
        Radiation Protection Dosimetry
    
 
	
    
        Quellenangaben
        
	    Volume: 139,  
	    Issue: 1-3,  
	    Pages: 245-249 
	    
	    
	
    
 
    
         
        
            Publisher
            Oxford University Press
        
 
        
            Publishing Place
            Oxford
        
 
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
    
 
    
        Research field(s)
        Radiation Sciences
    
 
    
        PSP Element(s)
        G-503600-002
G-503600-001
 
     
     	
    
    G-503600-001
        Scopus ID
        77953342655
    
    
        PubMed ID
        20167794
    
    
        Erfassungsdatum
        2010-07-28