PuSH - Publication Server of Helmholtz Zentrum München

Simpson, I.J.A.* ; Cardoso, M.J.* ; Modat, M.* ; Cash, D.M.* ; Woolrich, M.W.* ; Andersson, J.L.R.* ; Schnabel, J.A.* ; Ourselin, S.*

Probabilistic non-linear registration with spatially adaptive regularisation.

Med. Image Anal. 26, 203-216 (2015)
Publ. Version/Full Text DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
This paper introduces a novel method for inferring spatially varying regularisation in non-linear registration. This is achieved through full Bayesian inference on a probabilistic registration model, where the prior on the transformation parameters is parameterised as a weighted mixture of spatially localised components. Such an approach has the advantage of allowing the registration to be more flexibly driven by the data than a traditional globally defined regularisation penalty, such as bending energy. The proposed method adaptively determines the influence of the prior in a local region. The strength of the prior may be reduced in areas where the data better support deformations, or can enforce a stronger constraint in less informative areas. Consequently, the use of such a spatially adaptive prior may reduce unwanted impacts of regularisation on the inferred transformation. This is especially important for applications where the deformation field itself is of interest, such as tensor based morphometry. The proposed approach is demonstrated using synthetic images, and with application to tensor based morphometry analysis of subjects with Alzheimer's disease and healthy controls. The results indicate that using the proposed spatially adaptive prior leads to sparser deformations, which provide better localisation of regional volume change. Additionally, the proposed regularisation model leads to more data driven and localised maps of registration uncertainty. This paper also demonstrates for the first time the use of Bayesian model comparison for selecting different types of regularisation.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
3.654
3.584
19
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Bayesian Inference ; Medical Image Registration ; Registration Uncertainty ; Regularisation
Language english
Publication Year 2015
HGF-reported in Year 2015
ISSN (print) / ISBN 1361-8415
e-ISSN 1361-8415
Quellenangaben Volume: 26, Issue: 1, Pages: 203-216 Article Number: , Supplement: ,
Publisher Elsevier
Reviewing status Peer reviewed
Institute(s) Institute for Machine Learning in Biomed Imaging (IML)
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-507100-001
Scopus ID 84943789198
Erfassungsdatum 2022-09-05