Cahill, N.D.* ; Schnabel, J.A.* ; Noble, J.A.* ; Hawkes, D.J.*
    
    
        
Overlap invariance of cumulative residual entropy measures for multimodal image alignment.
    
    
        
    
    
        
        Proc. SPIE 7259, DOI: 10.1117/12.811585 (2009)
    
    
    
      
      
	
	    Cumulative residual entropy (CRE)1,2 has recently been advocated as an alternative to differential entropy for describing the complexity of an image. CRE has been used to construct an alternate form of mutual information (MI),3,4 called symmetric cumulative mutual information (SCMI) 5 or cross-CRE (CCRE).6 This alternate form of MI has exhibited superior performance to traditional MI in a variety of ways.6 However, like traditional MI, SCMI suffers from sensitivity to the changing size of the overlap between images over the course of registration. Alternative similarity measures based on differential entropy, such as normalized mutual information (NMI),7 entropy correlation coefficient (ECC)8,9 and modified mutual information (M-MI),10 have been shown to exhibit superior performance to MI with respect to the overlap sensitivity problem. In this paper, we show how CRE can be used to compute versions of NMI, ECC, and M-MI that we call the normalized cumulative mutual information (NCMI), cumulative residual entropy correlation coefficient (CRECC), and modified symmetric cumulative mutual information (M-SCMI). We use publicly available CT, PET, and MR brain images* with known ground truth transformations to evaluate the performance of these CRE-based similarity measures for rigid multimodal registration. Results show that the proposed similarity measures provide a statistically significant improvement in target registration error (TRE) over SCMI. © 2009 Copyright SPIE - The International Society for Optical Engineering.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Registration
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2009
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2009
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 7259 
	    Issue: ,  
	    Pages: ,  
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            SPIE
        
 
        
            Publishing Place
            
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-507100-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2022-09-05