PuSH - Publication Server of Helmholtz Zentrum München

Jones, A. ; Mourao, A. ; Czarna, A.* ; Matsuda, A.* ; Fino, R. ; Pyrc, K.* ; Sattler, M. ; Popowicz, G.M.

Characterization of SARS-CoV-2 replication complex elongation and proofreading activity.

Sci. Rep. 12:9593 (2022)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The replication complex (RC) of SARS-CoV-2 was recently shown to be one of the fastest RNA-dependent RNA polymerases of any known coronavirus. With this rapid elongation, the RC is more prone to incorporate mismatches during elongation, resulting in a highly variable genomic sequence. Such mutations render the design of viral protein targets difficult, as drugs optimized for a given viral protein sequence can quickly become inefficient as the genomic sequence evolves. Here, we use biochemical experiments to characterize features of RNA template recognition and elongation fidelity of the SARS-CoV-2 RdRp, and the role of the exonuclease, nsp14. Our study highlights the 2'OH group of the RNA ribose as a critical component for RdRp template recognition and elongation. We show that RdRp fidelity is reduced in the presence of the 3' deoxy-terminator nucleotide 3'dATP, which promotes the incorporation of mismatched nucleotides (leading to U:C, U:G, U:U, C:U, and A:C base pairs). We find that the nsp10-nsp14 heterodimer is unable to degrade RNA products lacking free 2'OH or 3'OH ribose groups. Our results suggest the potential use of 3' deoxy-terminator nucleotides in RNA-derived oligonucleotide inhibitors as antivirals against SARS-CoV-2.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
4.996
1.389
1
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2022
HGF-reported in Year 2022
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Quellenangaben Volume: 12, Issue: 1, Pages: , Article Number: 9593 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503000-001
Grants Deutsche Forschungsgemeinschaft
Bayerische Forschungsstiftung
PubMed ID 35688849
Erfassungsdatum 2022-09-22