PuSH - Publication Server of Helmholtz Zentrum München

Schaffert, A.* ; Karkossa, I.* ; Ueberham, E.* ; Schlichting, R.* ; Walter, K.* ; Arnold, J.* ; Blüher, M. ; Heiker, J.T. ; Lehmann, J.* ; Wabitsch, M.* ; Escher, B.I.* ; von Bergen, M.* ; Schubert, K.*

Di-(2-ethylhexyl) phthalate substitutes accelerate human adipogenesis through PPARγ activation and cause oxidative stress and impaired metabolic homeostasis in mature adipocytes.

Environ. Int. 164:107279 (2022)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag

The obesity pandemic is presumed to be accelerated by endocrine disruptors such as phthalate-plasticizers, which interfere with adipose tissue function. With the restriction of the plasticizer di-(2-ethylhexyl)-phthalate (DEHP), the search for safe substitutes gained importance. Focusing on the master regulator of adipogenesis and adipose tissue functionality, the peroxisome proliferator-activated receptor gamma (PPARγ), we evaluated 20 alternative plasticizers as well as their metabolites for binding to and activation of PPARγ and assessed effects on adipocyte lipid accumulation. Among several compounds that showed interaction with PPARγ, the metabolites MINCH, MHINP, and OH-MPHP of the plasticizers DINCH, DINP, and DPHP exerted the highest adipogenic potential in human adipocytes. These metabolites and their parent plasticizers were further analyzed in human preadipocytes and mature adipocytes using cellular assays and global proteomics. In preadipocytes, the plasticizer metabolites significantly increased lipid accumulation, enhanced leptin and adipsin secretion, and upregulated adipogenesis-associated markers and pathways, in a similar pattern to the PPARγ agonist rosiglitazone. Proteomics of mature adipocytes revealed that both, the plasticizers and their metabolites, induced oxidative stress, disturbed lipid storage, impaired metabolic homeostasis, and led to proinflammatory and insulin resistance promoting adipokine secretion. In conclusion, the plasticizer metabolites enhanced preadipocyte differentiation, at least partly mediated by PPARγ activation and, together with their parent plasticizers, affected the functionality of mature adipocytes similar to reported effects of a high-fat diet. This highlights the need to further investigate the currently used plasticizer alternatives for potential associations with obesity and the metabolic syndrome.

Impact Factor
Scopus SNIP
Altmetric
13.352
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Peroxisome Proliferator-activated Receptor ? ; (ppar?) ; Plasticizers ; Endocrine Disruption ; Oxidative Stress ; Sgbs ; Proteomics
Language english
Publication Year 2022
HGF-reported in Year 2022
ISSN (print) / ISBN 0160-4120
e-ISSN 1873-6750
Quellenangaben Volume: 164, Issue: , Pages: , Article Number: 107279 Supplement: ,
Publisher Elsevier
Reviewing status Peer reviewed
Institute(s) Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
POF-Topic(s) 30201 - Metabolic Health
Research field(s) Helmholtz Diabetes Center
PSP Element(s) G-506501-001
G-554800-001
Grants Deutsche Forschungsgemeinschaft
Deutsche Bundesstiftung Umwelt
PubMed ID 35567983
Erfassungsdatum 2022-06-25