Dual energy CT for a small animal radiation research platform using an empirical dual energy calibration.
Phys. Med. Biol. 67:135009 (2022)
Objective. Dual energy computed tomography (DECT) has been shown to provide additional image information compared to conventional CT and has been used in clinical routine for several years. The objective of this work is to present a DECT implementation for a Small Animal Radiation Research Platform (SARRP) and to verify it with a quantitative analysis of a material phantom and a qualitative analysis with an ex-vivo mouse measurement. Approach. For dual energy imaging, two different spectra are required, but commercial small animal irradiators are usually not optimized for DECT. We present a method that enables dual energy imaging on a SARRP with sequential scanning and an Empirical Dual Energy Calibration (EDEC). EDEC does not require the exact knowledge of spectra and attenuation coefficients; instead, it is based on a calibration. Due to the SARRP geometry and reconstruction algorithm, the calibration is done using an artificial CT image based on measured values. The calibration yields coefficients to convert the measured images into material decomposed images. Main results. To analyze the method quantitatively, the electron density and the effective atomic number of a material phantom were calculated and compared with theoretical values. The electron density showed a maximum deviation from the theoretical values of less than 5% and the atomic number of slightly more than 6%. For use in mice, DECT is particularly useful in distinguishing iodine contrast agent from bone. A material decomposition of an ex-vivo mouse with iodine contrast agent was material decomposed to show that bone and iodine can be distinguished and iodine-corrected images can be calculated. Significance. DECT is capable of calculating electron density images and effective atomic number images, which are appropriate parameters for quantitative analysis. Furthermore, virtual monochromatic images can be obtained for a better differentiation of materials, especially bone and iodine contrast agent.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Small Animal ; Computed Tomography ; Sarrp ; Ct ; Dual Energy ; Spectral ; Imaging
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
HGF-reported in Year
2022
ISSN (print) / ISBN
0031-9155
e-ISSN
1361-6560
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 67,
Issue: 13,
Pages: ,
Article Number: 135009
Supplement: ,
Series
Publisher
Institute of Physics Publishing (IOP)
Publishing Place
Bristol
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Radiation Sciences
PSP Element(s)
G-501300-001
Grants
German Research Foundation (DFG)
Copyright
Erfassungsdatum
2022-07-19