PuSH - Publication Server of Helmholtz Zentrum München

Kundrát, P. ; Rennau, H.* ; Remmele, J.* ; Sebb, S.* ; Simonetto, C. ; Kaiser, J.C. ; Hildebrandt, G.* ; Wolf, U.* ; Eidemüller, M.

Anatomy-dependent lung doses from 3D-conformal breast-cancer radiotherapy.

Sci. Rep. 12:10909 (2022)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
This study aims to identify key anatomic features that govern the individual variability of lung doses from breast-cancer radiotherapy. 3D conformal, intensity-modulated and hybrid techniques with 50.4 Gy whole-breast dose were planned for 128 patients. From their CT images, 17 anatomic measures were assessed and tested as predictors for lung dose-volume characteristics. Tangential techniques yielded mean ipsilateral lung doses in the range of 3–11 Gy. This inter-patient variability was explained to almost 40% by central lung distance, and to almost 60% if this measure was complemented by midplane lung width and maximum heart distance. Also the variability in further dose-volume metrics such as volume fractions receiving 5, 20 or 40 Gy could be largely explained by the anatomy. Multi-field intensity-modulated radiotherapy reduced high-exposed lung volumes, but resulted in higher mean ipsilateral lung doses and larger low-dose burden. Contralateral lung doses ranged from 0.3 to 1 Gy. The results highlight that there are large differences in lung doses among breast-cancer patients. Most of this inter-individual variability can be explained by a few anatomic features. The results will be implemented in a dedicated software tool to provide personalized estimates of long-term health risks related to breast-cancer radiotherapy. The results may also be used to identify favourable as well as problematic anatomies, and serve as a quick quantitative benchmark for individual treatment plans.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Quellenangaben Volume: 12, Issue: 1, Pages: , Article Number: 10909 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Non-patent literature Publications
Reviewing status Peer reviewed