Aznaourova, M.* ; Schmerer, N.* ; Janga, H.* ; Zhang, Z.* ; Pauck, K.* ; Bushe, J.* ; Volkers, S.M.* ; Wendisch, D.* ; Georg, P.* ; Ntini, E.* ; Aillaud, M.* ; Gündisch, M.* ; Mack, E.* ; Skevaki, C.* ; Keller, C.* ; Bauer, C.* ; Bertrams, W.* ; Marsico, A. ; Nist, A.* ; Stiewe, T.* ; Gruber, A.D.* ; Ruppert, C.* ; Li, Y.* ; Garn, H.* ; Sander, L.E.* ; Schulte, L.N.*
Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19.
Proc. Natl. Acad. Sci. U.S.A. 119:e2120680119 (2022)
The systemic immune response to viral infection is shaped by master transcription factors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA sequencing approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alarmin transcription) as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling, characterized PIRAT as a nuclear decoy RNA, keeping PU.1 from binding to alarmin promoters and promoting its binding to pseudogenes in naïve monocytes. NF-κB-dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Alarmin expression is additionally enhanced by the up-regulation of the lncRNA LUCAT1, which promotes NF-κB-dependent gene expression at the expense of targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncoding RNA networks in systemic antiviral responses to SARS-CoV-2 in humans.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Covid-19 ; Pu.1 ; Immunity ; Long Noncoding Rna ; Single-cell Rna-seq
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
HGF-reported in Year
2022
ISSN (print) / ISBN
0027-8424
e-ISSN
1091-6490
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 119,
Issue: 36,
Pages: ,
Article Number: e2120680119
Supplement: ,
Series
Publisher
National Academy of Sciences
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503800-001
Grants
Radboud University Medicle Centre
Juergen Manchot Foundation
Hessisches Ministerium für Wissenschaft und Kunst (Hessen State Ministry of Higher Education, Research and the Arts)
Deutsche Forschungsgemeinschaft (DFG)
Copyright
Erfassungsdatum
2022-11-15