Dou, Q.* ; So, T.Y.* ; Jiang, M.* ; Liu, Q.* ; Vardhanabhuti, V.* ; Kaissis, G.* ; Li, Z.* ; Si, W.* ; Lee, H.H.C.* ; Yu, K.* ; Feng, Z.* ; Dong, L.* ; Burian, E.* ; Jungmann, F.* ; Braren, R.* ; Makowski, M.* ; Kainz, B.* ; Rueckert, D.* ; Glocker, B.* ; Yu, S.C.H.* ; Heng, P.A.*
Author Correction: Federated deep learning for detecting COVID-19 lung abnormalities in CT: A privacy-preserving multinational validation study.
NPJ Digit. Med. 5:56 (2022)
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Other: Correction, Addition
Document type
Thesis type
Editors
Keywords
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
HGF-reported in Year
2022
ISSN (print) / ISBN
2398-6352
e-ISSN
2398-6352
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 5,
Issue: 1,
Pages: ,
Article Number: 56
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-530014-001
Grants
Copyright
Erfassungsdatum
2022-09-13