Bauer, S.* ; Eigenmann, J.* ; Zhao, Y.* ; Fleig, J.* ; Hawe, J.S.* ; Pan, C.* ; Bongiovanni, D.* ; Wengert, S. ; Ma, A.E.* ; Lusis, A.J.* ; Kovacic, J.C.* ; Bjoerkegren, J.L.M.* ; Maegdefessel, L.* ; Schunkert, H.* ; von Scheidt, M.*
     
    
        
Identification of the transcription factor ATF3 as a direct and indirect regulator of the LDLR.
    
    
        
    
    
        
        Metabolites 12:840 (2022)
    
    
    
      
      
	
	    Coronary artery disease (CAD) is a complex, multifactorial disease caused, in particular, by inflammation and cholesterol metabolism. At the molecular level, the role of tissue-specific signaling pathways leading to CAD is still largely unexplored. This study relied on two main resources: (1) genes with impact on atherosclerosis/CAD, and (2) liver-specific transcriptome analyses from human and mouse studies. The transcription factor activating transcription factor 3 (ATF3) was identified as a key regulator of a liver network relevant to atherosclerosis and linked to inflammation and cholesterol metabolism. ATF3 was predicted to be a direct and indirect (via MAF BZIP Transcription Factor F (MAFF)) regulator of low-density lipoprotein receptor (LDLR). Chromatin immunoprecipitation DNA sequencing (ChIP-seq) data from human liver cells revealed an ATF3 binding motif in the promoter regions of MAFF and LDLR. siRNA knockdown of ATF3 in human Hep3B liver cells significantly upregulated LDLR expression (p < 0.01). Inflammation induced by lipopolysaccharide (LPS) stimulation resulted in significant upregulation of ATF3 (p < 0.01) and subsequent downregulation of LDLR (p < 0.001). Liver-specific expression data from human CAD patients undergoing coronary artery bypass grafting (CABG) surgery (STARNET) and mouse models (HMDP) confirmed the regulatory role of ATF3 in the homeostasis of cholesterol metabolism. This study suggests that ATF3 might be a promising treatment candidate for lowering LDL cholesterol and reducing cardiovascular risk.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Atf3 ; Atherosclerosis ; Cardiovascular Disease ; Coronary Artery Disease ; Gene Expression ; Inflammation ; Ldlr ; Lipid Metabolism ; Liver Metabolism ; Lps ; Maff ; Transcription Factor
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2022
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2022
    
 
    
    
        ISSN (print) / ISBN
        2218-1989
    
 
    
        e-ISSN
        2218-1989
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 12,  
	    Issue: 9,  
	    Pages: ,  
	    Article Number: 840 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            MDPI
        
 
        
            Publishing Place
            
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30202 - Environmental Health
30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Pioneer Campus
Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-510007-001
G-503800-001
    
 
    
        Grants
        NHLBI NIH HHS
NIDDK NIH HHS
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2022-11-08