Hvidtfeldt, U.A.* ; Taj, T.* ; Chen, J.* ; Rodopoulou, S.* ; Strak, M.* ; de Hoogh, K.* ; Andersen, Z.J.* ; Bellander, T.* ; Brandt, J.* ; Fecht, D.* ; Forastiere, F.* ; Gulliver, J.* ; Hertel, O.* ; Hoffmann, B.* ; Jørgensen, J.T.* ; Katsouyanni, K.* ; Ketzel, M.* ; Lager, A.* ; Leander, K.* ; Ljungman, P.* ; Magnusson, P.K.E.* ; Nagel, G.* ; Pershagen, G.* ; Rizzuto, D.* ; Samoli, E.* ; So, R.* ; Stafoggia, M.* ; Tjønneland, A.* ; Vermeulen, R.* ; Weinmayr, G.* ; Wolf, K. ; Zhang, J.* ; Zitt, E.* ; Brunekreef, B.* ; Hoek, G.* ; Raaschou-Nielsen, O.*
Long term exposure to air pollution and kidney parenchyma cancer – Effects of low-level air pollution: A Study in Europe (ELAPSE).
Environ. Res. 215:114385 (2022)
BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited. METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: The participants were followed from baseline (1985–2005) to 2011–2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5–95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 μg/m3 (12.8–39.2), 15.3 μg/m3 (8.6–19.2), 1.6 10−5 m−1 (0.7–2.1), and 87.0 μg/m3 (70.3–97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 μg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 μg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10−5 m−1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 μg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma. CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Air Pollution ; Kidney Cancer Incidence ; Nitrogen Dioxide ; Ozone ; Particulate Matter ; Pm Elemental Components
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
0
HGF-reported in Year
2022
ISSN (print) / ISBN
0013-9351
e-ISSN
1096-0953
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 215,
Issue: ,
Pages: ,
Article Number: 114385
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
San Diego, Calif.
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Institute of Epidemiology (EPI)
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-504000-001
Grants
Health Effects Institute (HEI)
United States Environmental Protection Agency (EPA)
Copyright
Erfassungsdatum
2022-10-12