PuSH - Publication Server of Helmholtz Zentrum München

Unleashing high content screening in hit detection - Benchmarking AI workflows including novelty detection.

Comp. Struc. Biotech. J. 20, 5453-5465 (2022)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Complex mixtures containing natural products are still an interesting source of novel drug candidates. High content screening (HCS) is a popular tool to screen for such. In particular, multiplexed HCS assays promise comprehensive bioactivity profiles, but generate also high amounts of data. Yet, only some machine learning (ML) applications for data analysis are available and these usually require a profound knowledge of the underlying cell biology. Unfortunately, there are no applications that simply predict if samples are biologically active or not (any kind of bioactivity). Within this work, we benchmark ML algorithms for binary classification, starting with classical ML models, which are the standard classifiers of the scikit-learn library or ensemble models of these classifiers (a total of 92 models tested). Followed by a partial least square regression (PLSR)-based classification (44 tested models in total) and simple artificial neural networks (ANNs) with dense layers (72 tested models in total). In addition, a novelty detection (ND) was examined, which is supposed to handle unknown patterns. For the final analysis the models, with and without upstream ND, were tested with two independent data sets. In our analysis, a stacking model, an ensamble model of class ML algorithms, performed best to predict new and unknown data. ND improved the predictions of the models and was useful to handle unknown patterns. Importantly, the classifier presented here can be easily rebuilt and be adapted to the data and demands of other groups. The hit detector (ND + stacking model) is universal and suitable for a broader application to support the search for new drug candidates.
Impact Factor
Scopus SNIP
Altmetric
6.155
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Bioactives ; Cell Painting ; Classifier ; Deep Learning ; High-content Screening ; Hit Detection ; Machine Learning ; Novelty Detection
Language english
Publication Year 2022
HGF-reported in Year 2022
ISSN (print) / ISBN 2001-0370
e-ISSN 2001-0370
Quellenangaben Volume: 20, Issue: , Pages: 5453-5465 Article Number: , Supplement: ,
Publisher Research Network of Computational and Structural Biotechnology (RNCSB)
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
30203 - Molecular Targets and Therapies
Research field(s) Environmental Sciences
Enabling and Novel Technologies
PSP Element(s) G-504800-001
G-505293-001
Scopus ID 85139014917
PubMed ID 36212538
Erfassungsdatum 2022-11-23