Synthesis of Fe-doped TiO2 with improved photocatalytic properties under Vis-L irradiation.
Iranian J. Catal. 12, 283-293 (2022)
Fe-doped TiO2 nanoparticles were successfully synthesized by the coprecipitation method. TiO2 was doped with a different molar ratio of iron amounts, namely 0.1% and 0.2%. An undoped TiO2 was also prepared for comparison. X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-visible diffuse reflectance spectroscopy techniques were used to characterize the as-synthesized nanoparticles. The XRD spectra revealed that the photocatalysts were mostly in a well-crystallized anatase phase. Optical properties of the powders shifted from UV to the beginning of the visible light (Vis-L) region. Absorption edge wavelengths between 392 and 380 nm were obtained for the Fe-doped TiO2 and TiO2-P25, corresponding to band gap energies between 3.17 and 3.26 eV. TEM images showed homogeneity with a certain degree of agglomeration for all the samples. The photocatalytic efficiency of the as-synthesized Fe-doped TiO2 nanoparticles was performed using azo dye methyl orange (MO) in an aqueous solution under Vis-L irradiation. The photocatalytic results showed that Fe-doped TiO2 nanoparticles effectively degrade MO under Vis-L excitation and follow pseudo-first order kinetics. Besides, kinetic comparison showed that pure TiO2 is less efficient than 0.1% and 0.2% Fe-doped TiO2 because they exhibit unequaled efficiency. Moreover, the photocatalyst at 0.2% Fe-doped TiO2 molar ratio revealed the highest photocatalytic efficiency, which was 4.2 times higher compared to pure TiO2. Different amounts of Fe induced different increases in the apparent first-order rate constant of the photocatalytic process.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Coprecipitation ; Iron ; Mo ; Photocatalytic Degradation ; Titanium Dioxide
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
HGF-reported in Year
2022
ISSN (print) / ISBN
2252-0236
e-ISSN
2252-0236
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 12,
Issue: 3,
Pages: 283-293
Article Number: ,
Supplement: ,
Series
Publisher
Islamic Azad University
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504800-001
Grants
Copyright
Erfassungsdatum
2022-11-29