Kaplan, L.* ; Drexler, C.G.* ; Pfaller, A.M.* ; Brenna, S.* ; Wunderlich, K.A.* ; Dimitracopoulos, A.* ; Merl-Pham, J. ; Perez, M.T.* ; Schlötzer-Schrehardt, U.* ; Enzmann, V.* ; Samardzija, M.* ; Puig, B.* ; Fuchs, P.* ; Franze, K.* ; Hauck, S.M. ; Grosche, A.*
Retinal regions shape human and murine Müller cell proteome profile and functionality.
Glia 71, 391-414 (2023)
The human macula is a highly specialized retinal region with pit-like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone- and rod-rich retinae from human and mice and identified different expression profiles of cone- and rod-associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell-derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region-specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Eppk1 ; Müller Cells ; Glial Heterogeneity ; Macula ; Retina; Glial-cells; Epiplakin; Expression; Keratin; Acid; Rna; Identification; Accumulation; Software; Proteins
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
2022
HGF-reported in Year
2022
ISSN (print) / ISBN
0894-1491
e-ISSN
1098-1136
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 71,
Issue: 2,
Pages: 391-414
Article Number: ,
Supplement: ,
Series
Publisher
Wiley
Publishing Place
111 River St, Hoboken 07030-5774, Nj Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505700-001
A-630700-001
Grants
Deutsche Forschungsgemeinschaft
ProRetina Foundation Germany
Austrian Science Fund
Copyright
Erfassungsdatum
2022-12-03