Bilic, P.* ; Christ, P.* ; Li, H.B.* ; Vorontsov, E.A.* ; Ben-Cohen, A.* ; Kaissis, G.* ; Szeskin, A.* ; Jacobs, C.* ; Mamani, G.E.H.* ; Chartrand, G.* ; Lohöfer, F.* ; Holch, J.W.* ; Sommer, W.* ; Hofmann, F.* ; Hostettler, A.* ; Lev-Cohain, N.* ; Drozdzal, M.* ; Amitai, M.M.* ; Vivanti, R.* ; Sosna, J.* ; Ezhov, I.* ; Sekuboyina, A.* ; Navarro, F.* ; Kofler, F. ; Paetzold, J.C. ; Shit, S.* ; Hu, X.* ; Lipkova, J.* ; Rempfler, M.* ; Piraud, M. ; Kirschke, J.* ; Wiestler, B.* ; Zhang, Z.* ; Hülsemeyer, C.* ; Beetz, M.* ; Ettlinger, F.* ; Antonelli, M.* ; Bae, W.* ; Bellver, M.* ; Bi, L.* ; Chen, H.* ; Chlebus, G.* ; Dam, E.B.* ; Dou, Q.* ; Fu, C.W.* ; Georgescu, B.* ; Giró-I-Nieto, X.* ; Gruen, F.* ; Han, X.* ; Heng, P.A.* ; Hesser, J.* ; Moltz, J.H.* ; Igel, C.* ; Isensee, F.* ; Jäger, P.* ; Jia, F.* ; Kaluva, K.C.* ; Khened, M.* ; Kim, I.* ; Kim, J.H.* ; Kim, S.* ; Kohl, S.* ; Konopczynski, T.* ; Kori, A.* ; Krishnamurthi, G.* ; Li, F.* ; Li, H.* ; Li, J.* ; Li, X.* ; Lowengrub, J.* ; Ma, J.* ; Maier-Hein, K.* ; Maninis, K.K.* ; Meine, H.* ; Merhof, D.* ; Pai, A.* ; Perslev, M.* ; Petersen, J.* ; Pont-Tuset, J.* ; Qi, J.* ; Qi, X.* ; Rippel, O.* ; Roth, K.* ; Sarasua, I.* ; Schenk, A.* ; Shen, Z.* ; Torres, J.* ; Wachinger, C.* ; Wang, C.* ; Weninger, L.* ; Wu, J.* ; Xu, D.* ; Yang, X.* ; Yu, S.C.H.* ; Yuan, Y.* ; Yue, M.* ; Zhang, L.* ; Cardoso, J.* ; Bakas, S.* ; Braren, R.* ; Heinemann, V.* ; Pal, C.* ; Tang, A.* ; Kadoury, S.* ; Soler, L.* ; Van Ginneken, B.* ; Greenspan, H.* ; Joskowicz, L.* ; Menze, B.*
The Liver Tumor Segmentation Benchmark (LiTS).
Med. Image Anal. 84:102680 (2022)
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Benchmark ; Ct ; Deep Learning ; Liver ; Liver Tumor ; Segmentation; Statistical Shape Model; Surgical Resection; Ct; Burden; Metastases; Cancer; Algorithm; Lesions; Recist; Tissue
Keywords plus
Language
english
Publication Year
2022
Prepublished in Year
0
HGF-reported in Year
2022
ISSN (print) / ISBN
1361-8415
e-ISSN
1361-8415
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 84,
Issue: ,
Pages: ,
Article Number: 102680
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-530001-001
G-505800-001
Grants
Forschungskredit from University of Zurich
Fondation de l'association des radiologistes du Qubec
Fonds de recherche du Qubec en Sante
Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE)
Helmut-Horten-Foundation
DFG
Copyright
Erfassungsdatum
2022-12-19