PuSH - Publication Server of Helmholtz Zentrum München

Götz, A.A. ; Vidal-Puig, A.* ; Rödel, H.G.* ; Hrabě de Angelis, M. ; Stöger, T.

Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice.

Part. Fibre Toxicol. 8:28 (2011)
Publ. Version/Full Text Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: The alveolar macrophage (AM) - first line of innate immune defence against pathogens and environmental irritants - constitutively expresses peroxisome-proliferator activated receptor γ (PPARγ). PPARγ ligand-induced activation keeps the AM quiescent, and thereby contributes to combat invaders and resolve inflammation by augmenting the phagocytosis of apoptotic neutrophils and inhibiting an excessive expression of inflammatory genes. Because of these presumed anti-inflammatory functions of PPARγ we tested the hypothesis, whether reduced functional receptor availability in mutant mice resulted in increased cellular and molecular inflammatory response during acute inflammation and/or in an impairment of its resolution. METHODS: To address this hypothesis we examined the effects of a carbon-nanoparticle (CNP) lung challenge, as surrogate for non-infectious environmental irritants, in a murine model carrying a dominant-negative point mutation in the ligand-binding domain of PPARγ (P465L/wt). Animals were instilled intratracheally with Printex 90 CNPs and bronchoalveolar lavage (BAL) was gained 24 h or 72 h after instillation to investigate its cellular and protein composition. RESULTS: Higher BAL cell numbers - due to higher macrophage counts - were found in mutants irrespective of treatment. Neutrophil numbers in contrast were slightly lower in mutants. Intratracheal CNP instillation resulted in a profound recruitment of inflammatory neutrophils into the alveolus, but genotype related differences at acute inflammation (24 h) and resolution (72 h) were not observed. There were no signs for increased alveolar-capillary membrane damage or necrotic cell death in mutants as determined by BAL protein and lactate-dehydrogenase content. Pro-inflammatory macrophage-derived cytokine osteopontin was higher, but galectin-3 lower in female mutants. CXCL5 and lipocalin-2 markers, attributed to epithelial cell stimulation did not differ. CONCLUSIONS: Despite general genotype-related differences, we had to reject our hypothesis of an increased CNP induced lung inflammation and an impairment of its resolution in PPARγ defective mice. Although earlier studies showed ligand-induced activation of nuclear receptor PPARγ to promote resolution of lung inflammation, its reduced activity did not provide signs of resolution impairment in the settings investigated here.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.906
1.939
6
6
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords peroxisome-proliverator activated receptor gamma; carbon-nano particle; pulmonary inflammation; chronic lung disease; challenge; immune cell; broncho-alveolar lavage (BAL); inflammatory marker
Language english
Publication Year 2011
HGF-reported in Year 2011
ISSN (print) / ISBN 1743-8977
e-ISSN 1743-8977
Quellenangaben Volume: 8, Issue: , Pages: , Article Number: 28 Supplement: ,
Publisher BioMed Cental
Publishing Place London
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
30201 - Metabolic Health
Research field(s) Lung Research
Genetics and Epidemiology
PSP Element(s) G-505000-001
G-500600-003
PubMed ID 21933390
Scopus ID 80053175378
Erfassungsdatum 2011-11-28