PuSH - Publication Server of Helmholtz Zentrum München

Laine, N.* ; Zahnd, G. ; Liebgott, H.* ; Orkisz, M.*

Segmenting the carotid-artery wall in ultrasound image sequences with a dual-resolution U-net.

In: (2022 IEEE International Ultrasonics Symposium (IUS), 10-13 October 2022, Venice, Italy). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2022.:4 (IEEE International Ultrasonics Symposium, IUS)
DOI
Thickening of intima-media complex in the common carotid artery is a biomarker of atherosclerosis. To automatically measure this thickness, we propose a region-based segmentation method, involving a supervised deep-learning approach based on the dilated U-net architecture, named caroSegDeep. It was trained and evaluated using 5-fold cross-validation on two open-access databases containing a total of 2676 annotated images. Compared with the methods already evaluated on these databases, caroSegDeep established a new benchmark and achieved a mean absolute error twice smaller than the inter-observer variability.
Altmetric
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Conference contribution
Keywords Atherosclerosis ; Carotid Artery ; Deep Learning ; Segmentation ; Ultrasound; Intima-media Complex; Segmentation; Atherosclerosis
Language english
Publication Year 2022
HGF-reported in Year 2022
ISSN (print) / ISBN 1948-5719
e-ISSN 1948-5727
Conference Title 2022 IEEE International Ultrasonics Symposium (IUS)
Conference Date 10-13 October 2022
Conference Location Venice, Italy
Quellenangaben Volume: , Issue: , Pages: , Article Number: 4 Supplement: ,
Publisher Ieee
Publishing Place 345 E 47th St, New York, Ny 10017 Usa
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-505500-001
Grants LABEX PRIMES of Universite de Lyon, within the program "Investissements d'Avenir"
via NL's doctoral grant
Scopus ID 85143746174
Erfassungsdatum 2022-12-21