Chao, Y.Y.* ; Puhach, A.* ; Frieser, D.* ; Arunkumar, M.* ; Lehner, L.* ; Seeholzer, T. ; Garcia-Lopez, A.* ; van der Wal, M.* ; Fibi-Smetana, S.* ; Dietschmann, A.* ; Sommermann, T.* ; Cikovic, T.* ; Taher, L.* ; Gresnigt, M.S.* ; Vastert, S.J.* ; van Wijk, F.* ; Panagiotou, G.* ; Krappmann, D. ; Groß, O.* ; Zielinski, C.E.*
Human TH17 cells engage gasdermin E pores to release IL-1α on NLRP3 inflammasome activation.
Nat. Immunol. 24:33 (2023)
It has been shown that innate immune responses can adopt adaptive properties such as memory. Whether T cells utilize innate immune signaling pathways to diversify their repertoire of effector functions is unknown. Gasdermin E (GSDME) is a membrane pore-forming molecule that has been shown to execute pyroptotic cell death and thus to serve as a potential cancer checkpoint. In the present study, we show that human T cells express GSDME and, surprisingly, that this expression is associated with durable viability and repurposed for the release of the alarmin interleukin (IL)-1α. This property was restricted to a subset of human helper type 17 T cells with specificity for Candida albicans and regulated by a T cell-intrinsic NLRP3 inflammasome, and its engagement of a proteolytic cascade of successive caspase-8, caspase-3 and GSDME cleavage after T cell receptor stimulation and calcium-licensed calpain maturation of the pro-IL-1α form. Our results indicate that GSDME pore formation in T cells is a mechanism of unconventional cytokine release. This finding diversifies our understanding of the functional repertoire and mechanistic equipment of T cells and has implications for antifungal immunity.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Secretion; Effector; Protease; Interleukin-1-beta; Differentiation; Identification; Mechanisms; Il-1-alpha; Pyroptosis; Regulator
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
1529-2908
e-ISSN
1529-2916
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 24,
Issue: 2,
Pages: ,
Article Number: 33
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
Heidelberger Platz 3, Berlin, 14197, Germany
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Research Unit Signaling and Translation (SAT)
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-509800-002
Grants
European Research Council (ERC)
European Research Council
Carl-Zeiss Stiftung
German Center of Infection Research
Emmy Noether Program
Germany's Excellence Strategy (Balance of the Microverse)
Leibniz Center for Photonics in Infection Research
Deutsche Forschungsgemeinschaft (German Research Foundation)
Copyright
Erfassungsdatum
2023-01-11