PuSH - Publication Server of Helmholtz Zentrum München

Ahmed, M. ; Bicher, S. ; Stewart, R.D.* ; Bartzsch, S. ; Schmid, T.E. ; Combs, S.E. ; Meyer, J.*

Dosimetric quantities and cell survival for spatially fractionated radiation therapy.

Front. Physics 10:1064860 (2023)
Publ. Version/Full Text DOI
Open Access Gold
Creative Commons Lizenzvertrag
Purpose: Spatially Fractionated Radiation Therapy (SFRT) is characterized by large differences in peak and valley doses. Preclinical and clinical studies suggest that differences in biological mechanisms lead to differential normal tissue and tumor response compared to uniform irradiation. We hypothesize that to evaluate clinical effectiveness and understand fundamental biological mechanisms, radiobiological rather than physical dose quantities should be utilized for comparisons. The aim of this work is to determine whether Equivalent Uniform Dose (EUD) is a superior predictor of cell survival than absorbed dose. Methods: Absorbed dose parameters were compared to the Equivalent Uniform Dose to assess their predictive value for the relative effectiveness of uniform and SFRT with X-rays. A Bayesian bootstrap technique was utilized to model uncertainties in the biological fit parameters for a human fibroblast (MRC5) and two human tumor cell lines (LN18 and A549). Dose uncertainties were evaluated through measurements and error modeling of SFRT profiles. A dimensionless Relative Effectiveness Factor (REF) is proposed to quantify differences between uniform and SFRT irradiation. Results: For all cell lines, cell survival after SFRT matched uniform irradiation within the estimated uncertainties at equal values of the EUD. Average and peak dose showed poor correlation with in vitro cell survival. The proposed REF factor is dose dependent and suggests enhanced cell killing for both tumor cell lines (1.14 ±.08 for LN18, 1.32 ±.13 for A549 at 8 Gy EUD) for SFRT. Normal human fibroblasts showed reduced cell killing relative to uniform irradiation (.58 ±.06 for MRC5). Synthetically generated SFRT dose profiles revealed that EUD uncertainties are dominated by valley dose uncertainties, especially at high doses. Discussion: EUD is more predictive of cell survival than average or valley dose. Valley dose is close to equal to the EUD for values (Formula presented.) 10 Gy and has the advantage of being independent of uncertainties in biological parameters. The REF is a novel and useful metric to compare quantitative differences in SFRT and uniform irradiation. Conclusion: EUD is recommended for comparisons of SFRT and uniform irradiation. The results suggest an increase in survival of normal-human fibroblast cells and reduced survival for both tumor cell lines after SFRT relative to uniform irradiation.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Biological Dose ; Equivalent Uniform Dose (eud) ; Microbeam ; Microbeam Radiation Therapy (mrt) ; Minibeam ; Relative Biological Effectiveness (rbe) ; Relative Effectiveness Factor (ref) ; Spatially Fractionated Radiation Therapy (sfrt); Radiotherapy; Tolerance; Bootstrap; Beams
ISSN (print) / ISBN 2296-424X
e-ISSN 2296-424X
Quellenangaben Volume: 10, Issue: , Pages: , Article Number: 1064860 Supplement: ,
Publisher Frontiers
Publishing Place Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Non-patent literature Publications
Reviewing status Peer reviewed
Grants DFG (Deutsche Forschungsgesellschaft)
Helmholtz AI (ARTERY) the DAAD (Deutsche Akademische Austauschdienst)