Pardo, M.* ; Czech, H. ; Offer, S. ; Sklorz, M. ; Di Bucchianico, S. ; Hartner, E. ; Pantzke, J. ; Kuhn, E. ; Paul, A.* ; Ziehm, T.* ; Zhang, Z.H.* ; Jakobi, G. ; Bauer, S. ; Huber, A. ; Zimmermann, E. ; Rastak, N. ; Binder, S. ; Brejcha, R. ; Schneider, E.* ; Orasche, J. ; Rüger, C.P.* ; Gröger, T.M. ; Oeder, S. ; Schnelle-Kreis, J. ; Hohaus, T.* ; Kalberer, M.* ; Sippula, O.* ; Kiendler-Scharr, A.* ; Zimmermann, R. ; Rudich, Y.*
Atmospheric aging increases the cytotoxicity of bare soot particles in BEAS-2B lung cells.
Aerosol Sci. Technol. 57, 367-383 (2023)
Soot particles (SP) are ubiquitous components of atmospheric particulate matter and have been shown to cause various adverse health effects. In the atmosphere, freshly emitted SP can be coated by condensed low-volatility secondary organic and inorganic species. In addition, gas-phase oxidants may react with the surface of SP. Due to the chemical and physical resemblance of SP carbon backbone with polyaromatic hydrocarbon species and their potent oxidation products, we investigated the biological responses of BEAS-2B lung epithelial cells following exposure to fresh- and photochemically aged-SP at the air–liquid interface. A comprehensive physical and chemical aerosol characterization was performed to depict the atmospheric transformations of SP, showing that photochemical aging increased the organic carbon fraction and the oxidation state of the SP. RNA-sequencing and qPCR analysis showed varying gene expression profiles for fresh- and aged-SP. Exposure to aged-SP increased DNA damage, oxidative damage, and upregulation of NRF2-mediated oxidative stress response genes compared to fresh-SP. Furthermore, aged-SP augmented inflammatory cytokine secretion and activated AhR-response, as evidenced by increased expression of AhR-responsive genes. These results indicate that oxidative stress, inflammation, and DNA damage play a key role in the cytotoxicity of SP in BEAS-2B cells, where aging leads to higher toxic responses. Collectively, our results suggest that photochemical aging may increase SP toxicity through surface modifications that lead to an increased toxic response by activating different molecular pathways.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Vishal Verma; Black Carbon Particles; Polycyclic Aromatic-hydrocarbons; Secondary Organic Aerosol; Oxygen Species Ros; Oxidative Stress; Dna-damage; Receptor Ahr; Exposure; Ozone; Airway
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
0278-6826
e-ISSN
1521-7388
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 57,
Issue: 5,
Pages: 367-383
Article Number: ,
Supplement: ,
Series
Publisher
Taylor & Francis
Publishing Place
530 Walnut Street, Ste 850, Philadelphia, Pa 19106 Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504500-001
Grants
Horizon 2020 program for the EU FT-ICR MS (European Network of Fourier-transform Ion Cyclotron-Resonance Mass Spectrometry Centers)
Helmholtz International Laboratory aeroHEALTH
Israel Science Foundation (ISF)
Copyright
Erfassungsdatum
2023-11-28