PuSH - Publication Server of Helmholtz Zentrum München

Viver, T.* ; Conrad, R.E.* ; Lucio, M. ; Harir, M. ; Urdiain, M.* ; Gago, J.F.* ; Suárez-Suárez, A.* ; Bustos-Caparros, E.* ; Sanchez-Martinez, R.* ; Mayol, E.* ; Fassetta, F.* ; Pang, J.* ; Mădălin Gridan, I.* ; Venter, S.* ; Santos, F.* ; Baxter, B.* ; Llames, M.E.* ; Cristea, A.* ; Banciu, H.L.* ; Hedlund, B.P.* ; Stott, M.B.* ; Kämpfer, P.* ; Amann, R.* ; Schmitt-Kopplin, P. ; Konstantinidis, K.T.* ; Rosselló-Mora, R.*

Description of two cultivated and two uncultivated new Salinibacter species, one named following the rules of the bacteriological code: Salinibacter grassmerensis sp. nov.; and three named following the rules of the SeqCode: Salinibacter pepae sp. nov., Salinibacter abyssi sp. nov., and Salinibacter pampae sp. nov.

Syst. Appl. Microbiol. 46:126416 (2023)
Publ. Version/Full Text DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Current -omics methods allow the collection of a large amount of information that helps in describing the microbial diversity in nature. Here, and as a result of a culturomic approach that rendered the collection of thousands of isolates from 5 different hypersaline sites (in Spain, USA and New Zealand), we obtained 21 strains that represent two new Salinibacter species. For these species we propose the names Salinibacter pepae sp. nov. and Salinibacter grassmerensis sp. nov. (showing average nucleotide identity (ANI) values < 95.09% and 87.08% with Sal. ruber M31T, respectively). Metabolomics revealed species-specific discriminative profiles. Sal. ruber strains were distinguished by a higher percentage of polyunsaturated fatty acids and specific N-functionalized fatty acids; and Sal. altiplanensis was distinguished by an increased number of glycosylated molecules. Based on sequence characteristics and inferred phenotype of metagenome-assembled genomes (MAGs), we describe two new members of the genus Salinibacter. These species dominated in different sites and always coexisted with Sal. ruber and Sal. pepae. Based on the MAGs from three Argentinian lakes in the Pampa region of Argentina and the MAG of the Romanian lake Fără Fund, we describe the species Salinibacter pampae sp. nov. and Salinibacter abyssi sp. nov. respectively (showing ANI values 90.94% and 91.48% with Sal. ruber M31T, respectively). Sal. grassmerensis sp. nov. name was formed according to the rules of the International Code for Nomenclature of Prokaryotes (ICNP), and Sal. pepae, Sal. pampae sp. nov. and Sal. abyssi sp. nov. are proposed following the rules of the newly published Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). This work constitutes an example on how classification under ICNP and SeqCode can coexist, and how the official naming a cultivated organism for which the deposit in public repositories is difficult finds an intermediate solution.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.400
0.000
2
1
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Genomics ; Icnp ; Phylogeny ; Salinibacter ; Seqcode ; Taxonomy; Emended Descriptions; Bacteria; Patterns; Resource; Genus; Taxa
Language english
Publication Year 2023
HGF-reported in Year 2023
ISSN (print) / ISBN 0723-2020
e-ISSN 1618-0984
Quellenangaben Volume: 46, Issue: 3, Pages: , Article Number: 126416 Supplement: ,
Publisher Urban & Fischer
Publishing Place Hackerbrucke 6, 80335 Munich, Germany
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
Research field(s) Environmental Sciences
PSP Element(s) G-504800-001
Grants
University of Balearic Islands (UIB)
European Union (NextGenerationEU)
Ministry of Research, Innovation and Digitization, CNCS/CCCDI UEFISCDI
NASA
National Geographic Society
Argentinian National Scientific and Technical Research Council
U.S. National Science Foundation
Spanish Government through the "Maria de Maeztu Centre of Excellence"
HelmholzZentrum Muenchen from the Spanish Ministry of Science, Innovation and Universities
Georgia Tech from the Spanish Ministry of Science, Innovation and Universities
Spanish Ministry of Science, Innovation and Universities - European Regional Development Fund (FEDER)
Scopus ID 85150778460
PubMed ID 36965279
Erfassungsdatum 2023-10-06