Li, S.* ; Schmid, K. ; de Vries, D.H.* ; Korshevniuk, M.* ; Losert, C. ; Oelen, R.* ; van Blokland, I.V.* ; Groot, H.E.* ; Swertz, M.A.* ; van der Harst, P.* ; Westra, H.J.* ; van der Wijst, M.G.P.* ; Heinig, M. ; Franke, L.*
Identification of genetic variants that impact gene co-expression relationships using large-scale single-cell data.
Genome Biol. 24:80 (2023)
BACKGROUND: Expression quantitative trait loci (eQTL) studies show how genetic variants affect downstream gene expression. Single-cell data allows reconstruction of personalized co-expression networks and therefore the identification of SNPs altering co-expression patterns (co-expression QTLs, co-eQTLs) and the affected upstream regulatory processes using a limited number of individuals. RESULTS: We conduct a co-eQTL meta-analysis across four scRNA-seq peripheral blood mononuclear cell datasets using a novel filtering strategy followed by a permutation-based multiple testing approach. Before the analysis, we evaluate the co-expression patterns required for co-eQTL identification using different external resources. We identify a robust set of cell-type-specific co-eQTLs for 72 independent SNPs affecting 946 gene pairs. These co-eQTLs are replicated in a large bulk cohort and provide novel insights into how disease-associated variants alter regulatory networks. One co-eQTL SNP, rs1131017, that is associated with several autoimmune diseases, affects the co-expression of RPS26 with other ribosomal genes. Interestingly, specifically in T cells, the SNP additionally affects co-expression of RPS26 and a group of genes associated with T cell activation and autoimmune disease. Among these genes, we identify enrichment for targets of five T-cell-activation-related transcription factors whose binding sites harbor rs1131017. This reveals a previously overlooked process and pinpoints potential regulators that could explain the association of rs1131017 with autoimmune diseases. CONCLUSION: Our co-eQTL results highlight the importance of studying context-specific gene regulation to understand the biological implications of genetic variation. With the expected growth of sc-eQTL datasets, our strategy and technical guidelines will facilitate future co-eQTL identification, further elucidating unknown disease mechanisms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Co-expression Qtls ; Eqtl ; Scrna-seq; Proteins; Challenges; Thousands; Drivers
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
1474-760X
e-ISSN
1465-6906
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 24,
Issue: 1,
Pages: ,
Article Number: 80
Supplement: ,
Series
Publisher
BioMed Central
Publishing Place
Campus, 4 Crinan St, London N1 9xw, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-553500-001
G-503800-001
Grants
Federal Ministry of Education and Research (BMBF) within the German Center for Cardiovascular Research (DZHK)
Chan Zuckerberg Initiative
NWO-VIDI
ZonMW-VICI
ZonMW-VIDI
Horizon2020
NWO-VENI
Projekt DEAL.
Netherlands Organization for Scientific research (NWO)
Copyright
Erfassungsdatum
2023-10-06