PuSH - Publication Server of Helmholtz Zentrum München

Li, S.* ; Schmid, K. ; de Vries, D.H.* ; Korshevniuk, M.* ; Losert, C. ; Oelen, R.* ; van Blokland, I.V.* ; Groot, H.E.* ; Swertz, M.A.* ; van der Harst, P.* ; Westra, H.J.* ; van der Wijst, M.G.P.* ; Heinig, M. ; Franke, L.*

Identification of genetic variants that impact gene co-expression relationships using large-scale single-cell data.

Genome Biol. 24:80 (2023)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: Expression quantitative trait loci (eQTL) studies show how genetic variants affect downstream gene expression. Single-cell data allows reconstruction of personalized co-expression networks and therefore the identification of SNPs altering co-expression patterns (co-expression QTLs, co-eQTLs) and the affected upstream regulatory processes using a limited number of individuals. RESULTS: We conduct a co-eQTL meta-analysis across four scRNA-seq peripheral blood mononuclear cell datasets using a novel filtering strategy followed by a permutation-based multiple testing approach. Before the analysis, we evaluate the co-expression patterns required for co-eQTL identification using different external resources. We identify a robust set of cell-type-specific co-eQTLs for 72 independent SNPs affecting 946 gene pairs. These co-eQTLs are replicated in a large bulk cohort and provide novel insights into how disease-associated variants alter regulatory networks. One co-eQTL SNP, rs1131017, that is associated with several autoimmune diseases, affects the co-expression of RPS26 with other ribosomal genes. Interestingly, specifically in T cells, the SNP additionally affects co-expression of RPS26 and a group of genes associated with T cell activation and autoimmune disease. Among these genes, we identify enrichment for targets of five T-cell-activation-related transcription factors whose binding sites harbor rs1131017. This reveals a previously overlooked process and pinpoints potential regulators that could explain the association of rs1131017 with autoimmune diseases. CONCLUSION: Our co-eQTL results highlight the importance of studying context-specific gene regulation to understand the biological implications of genetic variation. With the expected growth of sc-eQTL datasets, our strategy and technical guidelines will facilitate future co-eQTL identification, further elucidating unknown disease mechanisms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
12.300
0.000
2
1
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Co-expression Qtls ; Eqtl ; Scrna-seq; Proteins; Challenges; Thousands; Drivers
Language english
Publication Year 2023
HGF-reported in Year 2023
ISSN (print) / ISBN 1474-760X
e-ISSN 1465-6906
Journal Genome Biology
Quellenangaben Volume: 24, Issue: 1, Pages: , Article Number: 80 Supplement: ,
Publisher BioMed Central
Publishing Place Campus, 4 Crinan St, London N1 9xw, England
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-553500-001
G-503800-001
Grants
Federal Ministry of Education and Research (BMBF) within the German Center for Cardiovascular Research (DZHK)
Chan Zuckerberg Initiative
NWO-VIDI
ZonMW-VICI
ZonMW-VIDI
Horizon2020
NWO-VENI
Projekt DEAL.
Netherlands Organization for Scientific research (NWO)
Scopus ID 85152863689
PubMed ID 37072791
Erfassungsdatum 2023-10-06